Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > resabs2d | Structured version Visualization version GIF version |
Description: Absorption law for restriction. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
resabs2d.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
resabs2d | ⊢ (𝜑 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resabs2d.1 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
2 | resabs2 5855 | . 2 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ⊆ wss 3858 ↾ cres 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-opab 5095 df-xp 5530 df-rel 5531 df-res 5536 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |