Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resabs2d Structured version   Visualization version   GIF version

Theorem resabs2d 45373
Description: Absorption law for restriction. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
resabs2d.1 (𝜑𝐵𝐶)
Assertion
Ref Expression
resabs2d (𝜑 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐵))

Proof of Theorem resabs2d
StepHypRef Expression
1 resabs2d.1 . 2 (𝜑𝐵𝐶)
2 resabs2 5988 . 2 (𝐵𝐶 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐵))
31, 2syl 17 1 (𝜑 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3922  cres 5648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-opab 5178  df-xp 5652  df-rel 5653  df-res 5658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator