Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resabs2d Structured version   Visualization version   GIF version

Theorem resabs2d 45254
Description: Absorption law for restriction. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
resabs2d.1 (𝜑𝐵𝐶)
Assertion
Ref Expression
resabs2d (𝜑 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐵))

Proof of Theorem resabs2d
StepHypRef Expression
1 resabs2d.1 . 2 (𝜑𝐵𝐶)
2 resabs2 6037 . 2 (𝐵𝐶 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐵))
31, 2syl 17 1 (𝜑 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wss 3970  cres 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5232  df-xp 5705  df-rel 5706  df-res 5711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator