| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resabs2 | Structured version Visualization version GIF version | ||
| Description: Absorption law for restriction. (Contributed by NM, 27-Mar-1998.) |
| Ref | Expression |
|---|---|
| resabs2 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescom 5957 | . 2 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) | |
| 2 | resabs1 5961 | . 2 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) | |
| 3 | 1, 2 | eqtrid 2776 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3905 ↾ cres 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-opab 5158 df-xp 5629 df-rel 5630 df-res 5635 |
| This theorem is referenced by: residm 5965 fresaunres2 6700 resabs2i 45121 resabs2d 45387 fourierdlem104 46195 fouriersw 46216 |
| Copyright terms: Public domain | W3C validator |