MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resabs2 Structured version   Visualization version   GIF version

Theorem resabs2 6013
Description: Absorption law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
resabs2 (𝐵𝐶 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐵))

Proof of Theorem resabs2
StepHypRef Expression
1 rescom 6007 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ↾ 𝐵)
2 resabs1 6011 . 2 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
31, 2eqtrid 2783 1 (𝐵𝐶 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3948  cres 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-opab 5211  df-xp 5682  df-rel 5683  df-res 5688
This theorem is referenced by:  residm  6014  fresaunres2  6763  resabs2i  44294  resabs2d  44576  fourierdlem104  45388  fouriersw  45409
  Copyright terms: Public domain W3C validator