MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resabs2 Structured version   Visualization version   GIF version

Theorem resabs2 6018
Description: Absorption law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
resabs2 (𝐵𝐶 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐵))

Proof of Theorem resabs2
StepHypRef Expression
1 rescom 6012 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ↾ 𝐵)
2 resabs1 6016 . 2 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
31, 2eqtrid 2778 1 (𝐵𝐶 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wss 3947  cres 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-opab 5216  df-xp 5688  df-rel 5689  df-res 5694
This theorem is referenced by:  residm  6019  fresaunres2  6774  resabs2i  44741  resabs2d  45019  fourierdlem104  45831  fouriersw  45852
  Copyright terms: Public domain W3C validator