Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem4a | Structured version Visualization version GIF version |
Description: Simplify (𝐴 ∖ {𝑄}) in hdmap14lem3 40189 to provide a slightly simpler definition later. (Contributed by NM, 31-May-2015.) |
Ref | Expression |
---|---|
hdmap14lem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap14lem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap14lem1.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap14lem1.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmap14lem3.o | ⊢ 0 = (0g‘𝑈) |
hdmap14lem1.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmap14lem1.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmap14lem1.z | ⊢ 𝑍 = (0g‘𝑅) |
hdmap14lem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap14lem2.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hdmap14lem1.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap14lem2.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hdmap14lem2.a | ⊢ 𝐴 = (Base‘𝑃) |
hdmap14lem2.q | ⊢ 𝑄 = (0g‘𝑃) |
hdmap14lem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap14lem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap14lem3.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap14lem1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) |
Ref | Expression |
---|---|
hdmap14lem4a | ⊢ (𝜑 → (∃!𝑔 ∈ (𝐴 ∖ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) ↔ ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem1.h | . . . . . . . . 9 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap14lem1.u | . . . . . . . . 9 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap14lem1.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap14lem3.o | . . . . . . . . 9 ⊢ 0 = (0g‘𝑈) | |
5 | hdmap14lem1.c | . . . . . . . . 9 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
6 | eqid 2737 | . . . . . . . . 9 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
7 | eqid 2737 | . . . . . . . . 9 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
8 | hdmap14lem1.s | . . . . . . . . 9 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
9 | hdmap14lem1.k | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | 1, 2, 9 | dvhlmod 39429 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LMod) |
11 | hdmap14lem1.f | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) | |
12 | 11 | eldifad 3917 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
13 | hdmap14lem3.x | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
14 | 13 | eldifad 3917 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
15 | hdmap14lem1.r | . . . . . . . . . . . 12 ⊢ 𝑅 = (Scalar‘𝑈) | |
16 | hdmap14lem1.t | . . . . . . . . . . . 12 ⊢ · = ( ·𝑠 ‘𝑈) | |
17 | hdmap14lem1.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝑅) | |
18 | 3, 15, 16, 17 | lmodvscl 20250 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 · 𝑋) ∈ 𝑉) |
19 | 10, 12, 14, 18 | syl3anc 1371 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 · 𝑋) ∈ 𝑉) |
20 | eldifsni 4745 | . . . . . . . . . . . 12 ⊢ (𝐹 ∈ (𝐵 ∖ {𝑍}) → 𝐹 ≠ 𝑍) | |
21 | 11, 20 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ≠ 𝑍) |
22 | eldifsni 4745 | . . . . . . . . . . . 12 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
23 | 13, 22 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
24 | hdmap14lem1.z | . . . . . . . . . . . 12 ⊢ 𝑍 = (0g‘𝑅) | |
25 | 1, 2, 9 | dvhlvec 39428 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑈 ∈ LVec) |
26 | 3, 16, 15, 17, 24, 4, 25, 12, 14 | lvecvsn0 20481 | . . . . . . . . . . 11 ⊢ (𝜑 → ((𝐹 · 𝑋) ≠ 0 ↔ (𝐹 ≠ 𝑍 ∧ 𝑋 ≠ 0 ))) |
27 | 21, 23, 26 | mpbir2and 711 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 · 𝑋) ≠ 0 ) |
28 | eldifsn 4742 | . . . . . . . . . 10 ⊢ ((𝐹 · 𝑋) ∈ (𝑉 ∖ { 0 }) ↔ ((𝐹 · 𝑋) ∈ 𝑉 ∧ (𝐹 · 𝑋) ≠ 0 )) | |
29 | 19, 27, 28 | sylanbrc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 · 𝑋) ∈ (𝑉 ∖ { 0 })) |
30 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 29 | hdmapnzcl 40164 | . . . . . . . 8 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) ∈ ((Base‘𝐶) ∖ {(0g‘𝐶)})) |
31 | eldifsni 4745 | . . . . . . . 8 ⊢ ((𝑆‘(𝐹 · 𝑋)) ∈ ((Base‘𝐶) ∖ {(0g‘𝐶)}) → (𝑆‘(𝐹 · 𝑋)) ≠ (0g‘𝐶)) | |
32 | 30, 31 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) ≠ (0g‘𝐶)) |
33 | 32 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ {𝑄}) → (𝑆‘(𝐹 · 𝑋)) ≠ (0g‘𝐶)) |
34 | elsni 4598 | . . . . . . . 8 ⊢ (𝑔 ∈ {𝑄} → 𝑔 = 𝑄) | |
35 | 34 | oveq1d 7361 | . . . . . . 7 ⊢ (𝑔 ∈ {𝑄} → (𝑔 ∙ (𝑆‘𝑋)) = (𝑄 ∙ (𝑆‘𝑋))) |
36 | 1, 5, 9 | lcdlmod 39911 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ LMod) |
37 | 1, 2, 3, 5, 7, 8, 9, 14 | hdmapcl 40149 | . . . . . . . 8 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (Base‘𝐶)) |
38 | hdmap14lem2.p | . . . . . . . . 9 ⊢ 𝑃 = (Scalar‘𝐶) | |
39 | hdmap14lem2.e | . . . . . . . . 9 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
40 | hdmap14lem2.q | . . . . . . . . 9 ⊢ 𝑄 = (0g‘𝑃) | |
41 | 7, 38, 39, 40, 6 | lmod0vs 20266 | . . . . . . . 8 ⊢ ((𝐶 ∈ LMod ∧ (𝑆‘𝑋) ∈ (Base‘𝐶)) → (𝑄 ∙ (𝑆‘𝑋)) = (0g‘𝐶)) |
42 | 36, 37, 41 | syl2anc 585 | . . . . . . 7 ⊢ (𝜑 → (𝑄 ∙ (𝑆‘𝑋)) = (0g‘𝐶)) |
43 | 35, 42 | sylan9eqr 2799 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ {𝑄}) → (𝑔 ∙ (𝑆‘𝑋)) = (0g‘𝐶)) |
44 | 33, 43 | neeqtrrd 3016 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ {𝑄}) → (𝑆‘(𝐹 · 𝑋)) ≠ (𝑔 ∙ (𝑆‘𝑋))) |
45 | 44 | neneqd 2946 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ {𝑄}) → ¬ (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) |
46 | 45 | nrexdv 3144 | . . 3 ⊢ (𝜑 → ¬ ∃𝑔 ∈ {𝑄} (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) |
47 | reuun2 4269 | . . 3 ⊢ (¬ ∃𝑔 ∈ {𝑄} (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) → (∃!𝑔 ∈ ((𝐴 ∖ {𝑄}) ∪ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) ↔ ∃!𝑔 ∈ (𝐴 ∖ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)))) | |
48 | 46, 47 | syl 17 | . 2 ⊢ (𝜑 → (∃!𝑔 ∈ ((𝐴 ∖ {𝑄}) ∪ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) ↔ ∃!𝑔 ∈ (𝐴 ∖ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)))) |
49 | hdmap14lem2.a | . . . 4 ⊢ 𝐴 = (Base‘𝑃) | |
50 | 38, 49, 40 | lmod0cl 20259 | . . 3 ⊢ (𝐶 ∈ LMod → 𝑄 ∈ 𝐴) |
51 | difsnid 4765 | . . 3 ⊢ (𝑄 ∈ 𝐴 → ((𝐴 ∖ {𝑄}) ∪ {𝑄}) = 𝐴) | |
52 | reueq1 3390 | . . 3 ⊢ (((𝐴 ∖ {𝑄}) ∪ {𝑄}) = 𝐴 → (∃!𝑔 ∈ ((𝐴 ∖ {𝑄}) ∪ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) ↔ ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)))) | |
53 | 36, 50, 51, 52 | 4syl 19 | . 2 ⊢ (𝜑 → (∃!𝑔 ∈ ((𝐴 ∖ {𝑄}) ∪ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) ↔ ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)))) |
54 | 48, 53 | bitr3d 281 | 1 ⊢ (𝜑 → (∃!𝑔 ∈ (𝐴 ∖ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) ↔ ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∃wrex 3071 ∃!wreu 3349 ∖ cdif 3902 ∪ cun 3903 {csn 4581 ‘cfv 6488 (class class class)co 7346 Basecbs 17014 Scalarcsca 17067 ·𝑠 cvsca 17068 0gc0g 17252 LModclmod 20233 LSpanclspn 20343 HLchlt 37668 LHypclh 38303 DVecHcdvh 39397 LCDualclcd 39905 HDMapchdma 40111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 ax-riotaBAD 37271 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-tp 4586 df-op 4588 df-ot 4590 df-uni 4861 df-int 4903 df-iun 4951 df-iin 4952 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7604 df-om 7790 df-1st 7908 df-2nd 7909 df-tpos 8121 df-undef 8168 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-er 8578 df-map 8697 df-en 8814 df-dom 8815 df-sdom 8816 df-fin 8817 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-nn 12084 df-2 12146 df-3 12147 df-4 12148 df-5 12149 df-6 12150 df-n0 12344 df-z 12430 df-uz 12693 df-fz 13350 df-struct 16950 df-sets 16967 df-slot 16985 df-ndx 16997 df-base 17015 df-ress 17044 df-plusg 17077 df-mulr 17078 df-sca 17080 df-vsca 17081 df-0g 17254 df-mre 17397 df-mrc 17398 df-acs 17400 df-proset 18115 df-poset 18133 df-plt 18150 df-lub 18166 df-glb 18167 df-join 18168 df-meet 18169 df-p0 18245 df-p1 18246 df-lat 18252 df-clat 18319 df-mgm 18428 df-sgrp 18477 df-mnd 18488 df-submnd 18533 df-grp 18681 df-minusg 18682 df-sbg 18683 df-subg 18853 df-cntz 19024 df-oppg 19051 df-lsm 19342 df-cmn 19488 df-abl 19489 df-mgp 19820 df-ur 19837 df-ring 19884 df-oppr 19961 df-dvdsr 19982 df-unit 19983 df-invr 20013 df-dvr 20024 df-drng 20099 df-lmod 20235 df-lss 20304 df-lsp 20344 df-lvec 20475 df-lsatoms 37294 df-lshyp 37295 df-lcv 37337 df-lfl 37376 df-lkr 37404 df-ldual 37442 df-oposet 37494 df-ol 37496 df-oml 37497 df-covers 37584 df-ats 37585 df-atl 37616 df-cvlat 37640 df-hlat 37669 df-llines 37817 df-lplanes 37818 df-lvols 37819 df-lines 37820 df-psubsp 37822 df-pmap 37823 df-padd 38115 df-lhyp 38307 df-laut 38308 df-ldil 38423 df-ltrn 38424 df-trl 38478 df-tgrp 39062 df-tendo 39074 df-edring 39076 df-dveca 39322 df-disoa 39348 df-dvech 39398 df-dib 39458 df-dic 39492 df-dih 39548 df-doch 39667 df-djh 39714 df-lcdual 39906 df-mapd 39944 df-hvmap 40076 df-hdmap1 40112 df-hdmap 40113 |
This theorem is referenced by: hdmap14lem4 40191 |
Copyright terms: Public domain | W3C validator |