| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnbi | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnbi.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylnbi.2 | ⊢ (¬ 𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylnbi | ⊢ (¬ 𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| 3 | sylnbi.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ (¬ 𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sylnbir 331 reuun2 4274 opswap 6184 iotanul 6469 riotaund 7351 ndmovcom 7542 suppssov1 8136 suppssov2 8137 suppssfv 8141 brtpos 8174 ranklim 9748 rankuni 9767 ituniiun 10324 hashprb 14311 1mavmul 22483 nonbooli 31652 disjunsn 32595 onvf1odlem4 35222 bj-rest10b 37206 disjrnmpt2 45348 ndmaovcl 47365 ndmaovcom 47367 lindslinindsimp1 48619 lmdfval 49810 cmdfval 49811 setrec2lem1 49854 |
| Copyright terms: Public domain | W3C validator |