| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnbi | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnbi.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylnbi.2 | ⊢ (¬ 𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylnbi | ⊢ (¬ 𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| 3 | sylnbi.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ (¬ 𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sylnbir 331 reuun2 4307 opswap 6231 iotanul 6520 riotaund 7410 ndmovcom 7603 suppssov1 8205 suppssov2 8206 suppssfv 8210 brtpos 8243 snnen2oOLD 9247 ranklim 9867 rankuni 9886 ituniiun 10445 hashprb 14419 1mavmul 22521 nonbooli 31617 disjunsn 32554 bj-rest10b 37031 disjrnmpt2 45138 ndmaovcl 47161 ndmaovcom 47163 lindslinindsimp1 48320 setrec2lem1 49208 |
| Copyright terms: Public domain | W3C validator |