MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylnbi Structured version   Visualization version   GIF version

Theorem sylnbi 330
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnbi.1 (𝜑𝜓)
sylnbi.2 𝜓𝜒)
Assertion
Ref Expression
sylnbi 𝜑𝜒)

Proof of Theorem sylnbi
StepHypRef Expression
1 sylnbi.1 . . 3 (𝜑𝜓)
21notbii 320 . 2 𝜑 ↔ ¬ 𝜓)
3 sylnbi.2 . 2 𝜓𝜒)
42, 3sylbi 216 1 𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  sylnbir  331  reuun2  4315  opswap  6229  iotanul  6522  riotaund  7405  ndmovcom  7594  suppssov1  8183  suppssfv  8187  brtpos  8220  snnen2oOLD  9227  ranklim  9839  rankuni  9858  ituniiun  10417  hashprb  14357  1mavmul  22050  nonbooli  30935  disjunsn  31856  bj-rest10b  36018  disjrnmpt2  43934  ndmaovcl  45959  ndmaovcom  45961  lindslinindsimp1  47186  setrec2lem1  47786
  Copyright terms: Public domain W3C validator