MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylnbi Structured version   Visualization version   GIF version

Theorem sylnbi 330
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnbi.1 (𝜑𝜓)
sylnbi.2 𝜓𝜒)
Assertion
Ref Expression
sylnbi 𝜑𝜒)

Proof of Theorem sylnbi
StepHypRef Expression
1 sylnbi.1 . . 3 (𝜑𝜓)
21notbii 320 . 2 𝜑 ↔ ¬ 𝜓)
3 sylnbi.2 . 2 𝜓𝜒)
42, 3sylbi 217 1 𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  sylnbir  331  reuun2  4344  opswap  6260  iotanul  6551  riotaund  7444  ndmovcom  7637  suppssov1  8238  suppssov2  8239  suppssfv  8243  brtpos  8276  snnen2oOLD  9290  ranklim  9913  rankuni  9932  ituniiun  10491  hashprb  14446  1mavmul  22575  nonbooli  31683  disjunsn  32616  bj-rest10b  37055  disjrnmpt2  45095  ndmaovcl  47118  ndmaovcom  47120  lindslinindsimp1  48186  setrec2lem1  48785
  Copyright terms: Public domain W3C validator