![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylnbi | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnbi.1 | ⊢ (𝜑 ↔ 𝜓) |
sylnbi.2 | ⊢ (¬ 𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylnbi | ⊢ (¬ 𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | notbii 320 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
3 | sylnbi.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
4 | 2, 3 | sylbi 217 | 1 ⊢ (¬ 𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: sylnbir 331 reuun2 4344 opswap 6260 iotanul 6551 riotaund 7444 ndmovcom 7637 suppssov1 8238 suppssov2 8239 suppssfv 8243 brtpos 8276 snnen2oOLD 9290 ranklim 9913 rankuni 9932 ituniiun 10491 hashprb 14446 1mavmul 22575 nonbooli 31683 disjunsn 32616 bj-rest10b 37055 disjrnmpt2 45095 ndmaovcl 47118 ndmaovcom 47120 lindslinindsimp1 48186 setrec2lem1 48785 |
Copyright terms: Public domain | W3C validator |