MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylnbi Structured version   Visualization version   GIF version

Theorem sylnbi 330
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnbi.1 (𝜑𝜓)
sylnbi.2 𝜓𝜒)
Assertion
Ref Expression
sylnbi 𝜑𝜒)

Proof of Theorem sylnbi
StepHypRef Expression
1 sylnbi.1 . . 3 (𝜑𝜓)
21notbii 320 . 2 𝜑 ↔ ¬ 𝜓)
3 sylnbi.2 . 2 𝜓𝜒)
42, 3sylbi 217 1 𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  sylnbir  331  reuun2  4307  opswap  6231  iotanul  6520  riotaund  7410  ndmovcom  7603  suppssov1  8205  suppssov2  8206  suppssfv  8210  brtpos  8243  snnen2oOLD  9247  ranklim  9867  rankuni  9886  ituniiun  10445  hashprb  14419  1mavmul  22521  nonbooli  31617  disjunsn  32554  bj-rest10b  37031  disjrnmpt2  45138  ndmaovcl  47161  ndmaovcom  47163  lindslinindsimp1  48320  setrec2lem1  49208
  Copyright terms: Public domain W3C validator