| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnbi | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnbi.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylnbi.2 | ⊢ (¬ 𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylnbi | ⊢ (¬ 𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| 3 | sylnbi.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ (¬ 𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sylnbir 331 reuun2 4270 opswap 6171 iotanul 6456 riotaund 7337 ndmovcom 7528 suppssov1 8122 suppssov2 8123 suppssfv 8127 brtpos 8160 ranklim 9732 rankuni 9751 ituniiun 10308 hashprb 14299 1mavmul 22458 nonbooli 31623 disjunsn 32566 onvf1odlem4 35142 bj-rest10b 37123 disjrnmpt2 45225 ndmaovcl 47234 ndmaovcom 47236 lindslinindsimp1 48489 lmdfval 49681 cmdfval 49682 setrec2lem1 49725 |
| Copyright terms: Public domain | W3C validator |