![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylnbi | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnbi.1 | ⊢ (𝜑 ↔ 𝜓) |
sylnbi.2 | ⊢ (¬ 𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylnbi | ⊢ (¬ 𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | notbii 320 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
3 | sylnbi.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
4 | 2, 3 | sylbi 216 | 1 ⊢ (¬ 𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sylnbir 331 reuun2 4315 opswap 6229 iotanul 6522 riotaund 7405 ndmovcom 7594 suppssov1 8183 suppssfv 8187 brtpos 8220 snnen2oOLD 9227 ranklim 9839 rankuni 9858 ituniiun 10417 hashprb 14357 1mavmul 22050 nonbooli 30935 disjunsn 31856 bj-rest10b 36018 disjrnmpt2 43934 ndmaovcl 45959 ndmaovcom 45961 lindslinindsimp1 47186 setrec2lem1 47786 |
Copyright terms: Public domain | W3C validator |