| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnbi | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnbi.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylnbi.2 | ⊢ (¬ 𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylnbi | ⊢ (¬ 𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| 3 | sylnbi.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ (¬ 𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sylnbir 331 reuun2 4288 opswap 6202 iotanul 6489 riotaund 7383 ndmovcom 7576 suppssov1 8176 suppssov2 8177 suppssfv 8181 brtpos 8214 ranklim 9797 rankuni 9816 ituniiun 10375 hashprb 14362 1mavmul 22435 nonbooli 31580 disjunsn 32523 onvf1odlem4 35093 bj-rest10b 37077 disjrnmpt2 45182 ndmaovcl 47204 ndmaovcom 47206 lindslinindsimp1 48446 lmdfval 49638 cmdfval 49639 setrec2lem1 49682 |
| Copyright terms: Public domain | W3C validator |