![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylnbi | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnbi.1 | ⊢ (𝜑 ↔ 𝜓) |
sylnbi.2 | ⊢ (¬ 𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylnbi | ⊢ (¬ 𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | notbii 320 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
3 | sylnbi.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
4 | 2, 3 | sylbi 217 | 1 ⊢ (¬ 𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: sylnbir 331 reuun2 4331 opswap 6251 iotanul 6541 riotaund 7427 ndmovcom 7620 suppssov1 8221 suppssov2 8222 suppssfv 8226 brtpos 8259 snnen2oOLD 9262 ranklim 9882 rankuni 9901 ituniiun 10460 hashprb 14433 1mavmul 22570 nonbooli 31680 disjunsn 32614 bj-rest10b 37072 disjrnmpt2 45131 ndmaovcl 47153 ndmaovcom 47155 lindslinindsimp1 48303 setrec2lem1 48924 |
Copyright terms: Public domain | W3C validator |