| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnbi | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnbi.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylnbi.2 | ⊢ (¬ 𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylnbi | ⊢ (¬ 𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| 3 | sylnbi.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ (¬ 𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sylnbir 331 reuun2 4278 opswap 6182 iotanul 6466 riotaund 7349 ndmovcom 7540 suppssov1 8137 suppssov2 8138 suppssfv 8142 brtpos 8175 ranklim 9759 rankuni 9778 ituniiun 10335 hashprb 14322 1mavmul 22451 nonbooli 31613 disjunsn 32556 onvf1odlem4 35081 bj-rest10b 37065 disjrnmpt2 45169 ndmaovcl 47191 ndmaovcom 47193 lindslinindsimp1 48446 lmdfval 49638 cmdfval 49639 setrec2lem1 49682 |
| Copyright terms: Public domain | W3C validator |