![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylnbi | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnbi.1 | ⊢ (𝜑 ↔ 𝜓) |
sylnbi.2 | ⊢ (¬ 𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylnbi | ⊢ (¬ 𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | notbii 319 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
3 | sylnbi.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
4 | 2, 3 | sylbi 216 | 1 ⊢ (¬ 𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sylnbir 330 reuun2 4314 opswap 6228 iotanul 6521 riotaund 7404 ndmovcom 7593 suppssov1 8182 suppssfv 8186 brtpos 8219 snnen2oOLD 9226 ranklim 9838 rankuni 9857 ituniiun 10416 hashprb 14356 1mavmul 22049 nonbooli 30899 disjunsn 31820 bj-rest10b 35965 disjrnmpt2 43876 ndmaovcl 45901 ndmaovcom 45903 lindslinindsimp1 47128 setrec2lem1 47728 |
Copyright terms: Public domain | W3C validator |