MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylnbi Structured version   Visualization version   GIF version

Theorem sylnbi 330
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnbi.1 (𝜑𝜓)
sylnbi.2 𝜓𝜒)
Assertion
Ref Expression
sylnbi 𝜑𝜒)

Proof of Theorem sylnbi
StepHypRef Expression
1 sylnbi.1 . . 3 (𝜑𝜓)
21notbii 320 . 2 𝜑 ↔ ¬ 𝜓)
3 sylnbi.2 . 2 𝜓𝜒)
42, 3sylbi 217 1 𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  sylnbir  331  reuun2  4284  opswap  6190  iotanul  6477  riotaund  7365  ndmovcom  7556  suppssov1  8153  suppssov2  8154  suppssfv  8158  brtpos  8191  ranklim  9773  rankuni  9792  ituniiun  10351  hashprb  14338  1mavmul  22411  nonbooli  31553  disjunsn  32496  onvf1odlem4  35066  bj-rest10b  37050  disjrnmpt2  45155  ndmaovcl  47177  ndmaovcom  47179  lindslinindsimp1  48419  lmdfval  49611  cmdfval  49612  setrec2lem1  49655
  Copyright terms: Public domain W3C validator