Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylnbi | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnbi.1 | ⊢ (𝜑 ↔ 𝜓) |
sylnbi.2 | ⊢ (¬ 𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylnbi | ⊢ (¬ 𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | notbii 320 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
3 | sylnbi.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
4 | 2, 3 | sylbi 216 | 1 ⊢ (¬ 𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sylnbir 331 reuun2 4254 opswap 6147 iotanul 6436 riotaund 7304 ndmovcom 7491 suppssov1 8045 suppssfv 8049 brtpos 8082 snnen2oOLD 9048 ranklim 9650 rankuni 9669 ituniiun 10228 hashprb 14161 1mavmul 21746 nonbooli 30062 disjunsn 30982 bj-rest10b 35308 disjrnmpt2 42946 ndmaovcl 44939 ndmaovcom 44941 lindslinindsimp1 46042 setrec2lem1 46643 |
Copyright terms: Public domain | W3C validator |