MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylnbi Structured version   Visualization version   GIF version

Theorem sylnbi 330
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnbi.1 (𝜑𝜓)
sylnbi.2 𝜓𝜒)
Assertion
Ref Expression
sylnbi 𝜑𝜒)

Proof of Theorem sylnbi
StepHypRef Expression
1 sylnbi.1 . . 3 (𝜑𝜓)
21notbii 320 . 2 𝜑 ↔ ¬ 𝜓)
3 sylnbi.2 . 2 𝜓𝜒)
42, 3sylbi 216 1 𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  sylnbir  331  reuun2  4254  opswap  6147  iotanul  6436  riotaund  7304  ndmovcom  7491  suppssov1  8045  suppssfv  8049  brtpos  8082  snnen2oOLD  9048  ranklim  9650  rankuni  9669  ituniiun  10228  hashprb  14161  1mavmul  21746  nonbooli  30062  disjunsn  30982  bj-rest10b  35308  disjrnmpt2  42946  ndmaovcl  44939  ndmaovcom  44941  lindslinindsimp1  46042  setrec2lem1  46643
  Copyright terms: Public domain W3C validator