MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylnbi Structured version   Visualization version   GIF version

Theorem sylnbi 330
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnbi.1 (𝜑𝜓)
sylnbi.2 𝜓𝜒)
Assertion
Ref Expression
sylnbi 𝜑𝜒)

Proof of Theorem sylnbi
StepHypRef Expression
1 sylnbi.1 . . 3 (𝜑𝜓)
21notbii 320 . 2 𝜑 ↔ ¬ 𝜓)
3 sylnbi.2 . 2 𝜓𝜒)
42, 3sylbi 217 1 𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  sylnbir  331  reuun2  4270  opswap  6171  iotanul  6456  riotaund  7337  ndmovcom  7528  suppssov1  8122  suppssov2  8123  suppssfv  8127  brtpos  8160  ranklim  9732  rankuni  9751  ituniiun  10308  hashprb  14299  1mavmul  22458  nonbooli  31623  disjunsn  32566  onvf1odlem4  35142  bj-rest10b  37123  disjrnmpt2  45225  ndmaovcl  47234  ndmaovcom  47236  lindslinindsimp1  48489  lmdfval  49681  cmdfval  49682  setrec2lem1  49725
  Copyright terms: Public domain W3C validator