MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylnbi Structured version   Visualization version   GIF version

Theorem sylnbi 330
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnbi.1 (𝜑𝜓)
sylnbi.2 𝜓𝜒)
Assertion
Ref Expression
sylnbi 𝜑𝜒)

Proof of Theorem sylnbi
StepHypRef Expression
1 sylnbi.1 . . 3 (𝜑𝜓)
21notbii 320 . 2 𝜑 ↔ ¬ 𝜓)
3 sylnbi.2 . 2 𝜓𝜒)
42, 3sylbi 217 1 𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  sylnbir  331  reuun2  4331  opswap  6251  iotanul  6541  riotaund  7427  ndmovcom  7620  suppssov1  8221  suppssov2  8222  suppssfv  8226  brtpos  8259  snnen2oOLD  9262  ranklim  9882  rankuni  9901  ituniiun  10460  hashprb  14433  1mavmul  22570  nonbooli  31680  disjunsn  32614  bj-rest10b  37072  disjrnmpt2  45131  ndmaovcl  47153  ndmaovcom  47155  lindslinindsimp1  48303  setrec2lem1  48924
  Copyright terms: Public domain W3C validator