Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftfo Structured version   Visualization version   GIF version

Theorem fargshiftfo 46409
Description: If a function is onto, then also the shifted function is onto. (Contributed by Alexander van der Vekens, 24-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
Assertion
Ref Expression
fargshiftfo ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐸   𝑥,𝑁
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem fargshiftfo
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 6805 . . 3 (𝐹:(1...𝑁)–onto→dom 𝐸𝐹:(1...𝑁)⟶dom 𝐸)
2 fargshift.g . . . 4 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
32fargshiftf 46407 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
41, 3sylan2 592 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
52rnmpt 5954 . . 3 ran 𝐺 = {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))}
6 fofn 6807 . . . . . 6 (𝐹:(1...𝑁)–onto→dom 𝐸𝐹 Fn (1...𝑁))
7 fnrnfv 6951 . . . . . 6 (𝐹 Fn (1...𝑁) → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)})
86, 7syl 17 . . . . 5 (𝐹:(1...𝑁)–onto→dom 𝐸 → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)})
98adantl 481 . . . 4 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)})
10 df-fo 6549 . . . . . . 7 (𝐹:(1...𝑁)–onto→dom 𝐸 ↔ (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸))
1110biimpi 215 . . . . . 6 (𝐹:(1...𝑁)–onto→dom 𝐸 → (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸))
1211adantl 481 . . . . 5 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸))
13 eqeq1 2735 . . . . . . . . 9 (ran 𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} ↔ dom 𝐸 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)}))
14 eqcom 2738 . . . . . . . . 9 (dom 𝐸 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} ↔ {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸)
1513, 14bitrdi 287 . . . . . . . 8 (ran 𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} ↔ {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸))
16 ffn 6717 . . . . . . . . . . . . . 14 (𝐹:(1...𝑁)⟶dom 𝐸𝐹 Fn (1...𝑁))
17 fseq1hash 14341 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁)
1816, 17sylan2 592 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁)
191, 18sylan2 592 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (♯‘𝐹) = 𝑁)
20 fz0add1fz1 13707 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (1...𝑁))
21 nn0z 12588 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
22 fzval3 13706 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (1...𝑁) = (1..^(𝑁 + 1)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (1...𝑁) = (1..^(𝑁 + 1)))
24 nn0cn 12487 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
25 1cnd 11214 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
2624, 25addcomd 11421 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑁 + 1) = (1 + 𝑁))
2726oveq2d 7428 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (1..^(𝑁 + 1)) = (1..^(1 + 𝑁)))
2823, 27eqtrd 2771 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (1...𝑁) = (1..^(1 + 𝑁)))
2928eleq2d 2818 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑧 ∈ (1...𝑁) ↔ 𝑧 ∈ (1..^(1 + 𝑁))))
3029biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑧 ∈ (1..^(1 + 𝑁)))
3121adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑁 ∈ ℤ)
32 fzosubel3 13698 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (1..^(1 + 𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑧 − 1) ∈ (0..^𝑁))
3330, 31, 32syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → (𝑧 − 1) ∈ (0..^𝑁))
34 oveq1 7419 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑧 − 1) → (𝑥 + 1) = ((𝑧 − 1) + 1))
3534eqeq2d 2742 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑧 − 1) → (𝑧 = (𝑥 + 1) ↔ 𝑧 = ((𝑧 − 1) + 1)))
3635adantl 481 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) ∧ 𝑥 = (𝑧 − 1)) → (𝑧 = (𝑥 + 1) ↔ 𝑧 = ((𝑧 − 1) + 1)))
37 elfzelz 13506 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (1...𝑁) → 𝑧 ∈ ℤ)
3837zcnd 12672 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (1...𝑁) → 𝑧 ∈ ℂ)
3938adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑧 ∈ ℂ)
40 1cnd 11214 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 1 ∈ ℂ)
4139, 40npcand 11580 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → ((𝑧 − 1) + 1) = 𝑧)
4241eqcomd 2737 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑧 = ((𝑧 − 1) + 1))
4333, 36, 42rspcedvd 3614 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → ∃𝑥 ∈ (0..^𝑁)𝑧 = (𝑥 + 1))
44 fveq2 6891 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑥 + 1) → (𝐹𝑧) = (𝐹‘(𝑥 + 1)))
4544eqeq2d 2742 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑥 + 1) → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹‘(𝑥 + 1))))
4645adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑧 = (𝑥 + 1)) → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹‘(𝑥 + 1))))
4720, 43, 46rexxfrd 5407 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1))))
4847adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) = 𝑁) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1))))
49 oveq2 7420 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 𝑁 → (0..^(♯‘𝐹)) = (0..^𝑁))
5049rexeqdv 3325 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 𝑁 → (∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1)) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1))))
5150bibi2d 342 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 𝑁 → ((∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))) ↔ (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1)))))
5251adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) = 𝑁) → ((∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))) ↔ (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1)))))
5348, 52mpbird 257 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) = 𝑁) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))))
5419, 53syldan 590 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))))
5554abbidv 2800 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))})
5655eqeq1d 2733 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → ({𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸 ↔ {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))
5756biimpcd 248 . . . . . . . 8 ({𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))
5815, 57syl6bi 253 . . . . . . 7 (ran 𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)))
5958com23 86 . . . . . 6 (ran 𝐹 = dom 𝐸 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)))
6059adantl 481 . . . . 5 ((𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸) → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)))
6112, 60mpcom 38 . . . 4 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))
629, 61mpd 15 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)
635, 62eqtrid 2783 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → ran 𝐺 = dom 𝐸)
64 dffo2 6809 . 2 (𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸 ↔ (𝐺:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ ran 𝐺 = dom 𝐸))
654, 63, 64sylanbrc 582 1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  {cab 2708  wrex 3069  cmpt 5231  dom cdm 5676  ran crn 5677   Fn wfn 6538  wf 6539  ontowfo 6541  cfv 6543  (class class class)co 7412  cc 11112  0cc0 11114  1c1 11115   + caddc 11117  cmin 11449  0cn0 12477  cz 12563  ...cfz 13489  ..^cfzo 13632  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-hash 14296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator