Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftfo Structured version   Visualization version   GIF version

Theorem fargshiftfo 44894
Description: If a function is onto, then also the shifted function is onto. (Contributed by Alexander van der Vekens, 24-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
Assertion
Ref Expression
fargshiftfo ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐸   𝑥,𝑁
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem fargshiftfo
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 6688 . . 3 (𝐹:(1...𝑁)–onto→dom 𝐸𝐹:(1...𝑁)⟶dom 𝐸)
2 fargshift.g . . . 4 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
32fargshiftf 44892 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
41, 3sylan2 593 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
52rnmpt 5864 . . 3 ran 𝐺 = {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))}
6 fofn 6690 . . . . . 6 (𝐹:(1...𝑁)–onto→dom 𝐸𝐹 Fn (1...𝑁))
7 fnrnfv 6829 . . . . . 6 (𝐹 Fn (1...𝑁) → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)})
86, 7syl 17 . . . . 5 (𝐹:(1...𝑁)–onto→dom 𝐸 → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)})
98adantl 482 . . . 4 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)})
10 df-fo 6439 . . . . . . 7 (𝐹:(1...𝑁)–onto→dom 𝐸 ↔ (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸))
1110biimpi 215 . . . . . 6 (𝐹:(1...𝑁)–onto→dom 𝐸 → (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸))
1211adantl 482 . . . . 5 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸))
13 eqeq1 2742 . . . . . . . . 9 (ran 𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} ↔ dom 𝐸 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)}))
14 eqcom 2745 . . . . . . . . 9 (dom 𝐸 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} ↔ {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸)
1513, 14bitrdi 287 . . . . . . . 8 (ran 𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} ↔ {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸))
16 ffn 6600 . . . . . . . . . . . . . 14 (𝐹:(1...𝑁)⟶dom 𝐸𝐹 Fn (1...𝑁))
17 fseq1hash 14091 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁)
1816, 17sylan2 593 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁)
191, 18sylan2 593 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (♯‘𝐹) = 𝑁)
20 fz0add1fz1 13457 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (1...𝑁))
21 nn0z 12343 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
22 fzval3 13456 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (1...𝑁) = (1..^(𝑁 + 1)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (1...𝑁) = (1..^(𝑁 + 1)))
24 nn0cn 12243 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
25 1cnd 10970 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
2624, 25addcomd 11177 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑁 + 1) = (1 + 𝑁))
2726oveq2d 7291 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (1..^(𝑁 + 1)) = (1..^(1 + 𝑁)))
2823, 27eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (1...𝑁) = (1..^(1 + 𝑁)))
2928eleq2d 2824 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑧 ∈ (1...𝑁) ↔ 𝑧 ∈ (1..^(1 + 𝑁))))
3029biimpa 477 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑧 ∈ (1..^(1 + 𝑁)))
3121adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑁 ∈ ℤ)
32 fzosubel3 13448 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (1..^(1 + 𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑧 − 1) ∈ (0..^𝑁))
3330, 31, 32syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → (𝑧 − 1) ∈ (0..^𝑁))
34 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑧 − 1) → (𝑥 + 1) = ((𝑧 − 1) + 1))
3534eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑧 − 1) → (𝑧 = (𝑥 + 1) ↔ 𝑧 = ((𝑧 − 1) + 1)))
3635adantl 482 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) ∧ 𝑥 = (𝑧 − 1)) → (𝑧 = (𝑥 + 1) ↔ 𝑧 = ((𝑧 − 1) + 1)))
37 elfzelz 13256 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (1...𝑁) → 𝑧 ∈ ℤ)
3837zcnd 12427 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (1...𝑁) → 𝑧 ∈ ℂ)
3938adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑧 ∈ ℂ)
40 1cnd 10970 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 1 ∈ ℂ)
4139, 40npcand 11336 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → ((𝑧 − 1) + 1) = 𝑧)
4241eqcomd 2744 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑧 = ((𝑧 − 1) + 1))
4333, 36, 42rspcedvd 3563 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → ∃𝑥 ∈ (0..^𝑁)𝑧 = (𝑥 + 1))
44 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑥 + 1) → (𝐹𝑧) = (𝐹‘(𝑥 + 1)))
4544eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑥 + 1) → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹‘(𝑥 + 1))))
4645adantl 482 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑧 = (𝑥 + 1)) → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹‘(𝑥 + 1))))
4720, 43, 46rexxfrd 5332 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1))))
4847adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) = 𝑁) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1))))
49 oveq2 7283 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 𝑁 → (0..^(♯‘𝐹)) = (0..^𝑁))
5049rexeqdv 3349 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 𝑁 → (∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1)) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1))))
5150bibi2d 343 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 𝑁 → ((∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))) ↔ (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1)))))
5251adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) = 𝑁) → ((∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))) ↔ (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1)))))
5348, 52mpbird 256 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) = 𝑁) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))))
5419, 53syldan 591 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))))
5554abbidv 2807 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))})
5655eqeq1d 2740 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → ({𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸 ↔ {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))
5756biimpcd 248 . . . . . . . 8 ({𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))
5815, 57syl6bi 252 . . . . . . 7 (ran 𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)))
5958com23 86 . . . . . 6 (ran 𝐹 = dom 𝐸 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)))
6059adantl 482 . . . . 5 ((𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸) → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)))
6112, 60mpcom 38 . . . 4 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))
629, 61mpd 15 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)
635, 62eqtrid 2790 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → ran 𝐺 = dom 𝐸)
64 dffo2 6692 . 2 (𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸 ↔ (𝐺:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ ran 𝐺 = dom 𝐸))
654, 63, 64sylanbrc 583 1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  cmpt 5157  dom cdm 5589  ran crn 5590   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874  cmin 11205  0cn0 12233  cz 12319  ...cfz 13239  ..^cfzo 13382  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator