Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftfo Structured version   Visualization version   GIF version

Theorem fargshiftfo 46096
Description: If a function is onto, then also the shifted function is onto. (Contributed by Alexander van der Vekens, 24-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
Assertion
Ref Expression
fargshiftfo ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐸   𝑥,𝑁
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem fargshiftfo
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 6802 . . 3 (𝐹:(1...𝑁)–onto→dom 𝐸𝐹:(1...𝑁)⟶dom 𝐸)
2 fargshift.g . . . 4 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
32fargshiftf 46094 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
41, 3sylan2 593 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
52rnmpt 5952 . . 3 ran 𝐺 = {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))}
6 fofn 6804 . . . . . 6 (𝐹:(1...𝑁)–onto→dom 𝐸𝐹 Fn (1...𝑁))
7 fnrnfv 6948 . . . . . 6 (𝐹 Fn (1...𝑁) → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)})
86, 7syl 17 . . . . 5 (𝐹:(1...𝑁)–onto→dom 𝐸 → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)})
98adantl 482 . . . 4 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)})
10 df-fo 6546 . . . . . . 7 (𝐹:(1...𝑁)–onto→dom 𝐸 ↔ (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸))
1110biimpi 215 . . . . . 6 (𝐹:(1...𝑁)–onto→dom 𝐸 → (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸))
1211adantl 482 . . . . 5 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸))
13 eqeq1 2736 . . . . . . . . 9 (ran 𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} ↔ dom 𝐸 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)}))
14 eqcom 2739 . . . . . . . . 9 (dom 𝐸 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} ↔ {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸)
1513, 14bitrdi 286 . . . . . . . 8 (ran 𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} ↔ {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸))
16 ffn 6714 . . . . . . . . . . . . . 14 (𝐹:(1...𝑁)⟶dom 𝐸𝐹 Fn (1...𝑁))
17 fseq1hash 14332 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁)
1816, 17sylan2 593 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁)
191, 18sylan2 593 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (♯‘𝐹) = 𝑁)
20 fz0add1fz1 13698 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (1...𝑁))
21 nn0z 12579 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
22 fzval3 13697 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (1...𝑁) = (1..^(𝑁 + 1)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (1...𝑁) = (1..^(𝑁 + 1)))
24 nn0cn 12478 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
25 1cnd 11205 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
2624, 25addcomd 11412 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑁 + 1) = (1 + 𝑁))
2726oveq2d 7421 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (1..^(𝑁 + 1)) = (1..^(1 + 𝑁)))
2823, 27eqtrd 2772 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (1...𝑁) = (1..^(1 + 𝑁)))
2928eleq2d 2819 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑧 ∈ (1...𝑁) ↔ 𝑧 ∈ (1..^(1 + 𝑁))))
3029biimpa 477 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑧 ∈ (1..^(1 + 𝑁)))
3121adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑁 ∈ ℤ)
32 fzosubel3 13689 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (1..^(1 + 𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑧 − 1) ∈ (0..^𝑁))
3330, 31, 32syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → (𝑧 − 1) ∈ (0..^𝑁))
34 oveq1 7412 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑧 − 1) → (𝑥 + 1) = ((𝑧 − 1) + 1))
3534eqeq2d 2743 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑧 − 1) → (𝑧 = (𝑥 + 1) ↔ 𝑧 = ((𝑧 − 1) + 1)))
3635adantl 482 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) ∧ 𝑥 = (𝑧 − 1)) → (𝑧 = (𝑥 + 1) ↔ 𝑧 = ((𝑧 − 1) + 1)))
37 elfzelz 13497 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (1...𝑁) → 𝑧 ∈ ℤ)
3837zcnd 12663 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (1...𝑁) → 𝑧 ∈ ℂ)
3938adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑧 ∈ ℂ)
40 1cnd 11205 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 1 ∈ ℂ)
4139, 40npcand 11571 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → ((𝑧 − 1) + 1) = 𝑧)
4241eqcomd 2738 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑧 = ((𝑧 − 1) + 1))
4333, 36, 42rspcedvd 3614 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → ∃𝑥 ∈ (0..^𝑁)𝑧 = (𝑥 + 1))
44 fveq2 6888 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑥 + 1) → (𝐹𝑧) = (𝐹‘(𝑥 + 1)))
4544eqeq2d 2743 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑥 + 1) → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹‘(𝑥 + 1))))
4645adantl 482 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑧 = (𝑥 + 1)) → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹‘(𝑥 + 1))))
4720, 43, 46rexxfrd 5406 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1))))
4847adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) = 𝑁) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1))))
49 oveq2 7413 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 𝑁 → (0..^(♯‘𝐹)) = (0..^𝑁))
5049rexeqdv 3326 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 𝑁 → (∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1)) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1))))
5150bibi2d 342 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 𝑁 → ((∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))) ↔ (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1)))))
5251adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) = 𝑁) → ((∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))) ↔ (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1)))))
5348, 52mpbird 256 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) = 𝑁) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))))
5419, 53syldan 591 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))))
5554abbidv 2801 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))})
5655eqeq1d 2734 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → ({𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸 ↔ {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))
5756biimpcd 248 . . . . . . . 8 ({𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))
5815, 57syl6bi 252 . . . . . . 7 (ran 𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)))
5958com23 86 . . . . . 6 (ran 𝐹 = dom 𝐸 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)))
6059adantl 482 . . . . 5 ((𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸) → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)))
6112, 60mpcom 38 . . . 4 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))
629, 61mpd 15 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)
635, 62eqtrid 2784 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → ran 𝐺 = dom 𝐸)
64 dffo2 6806 . 2 (𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸 ↔ (𝐺:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ ran 𝐺 = dom 𝐸))
654, 63, 64sylanbrc 583 1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2709  wrex 3070  cmpt 5230  dom cdm 5675  ran crn 5676   Fn wfn 6535  wf 6536  ontowfo 6538  cfv 6540  (class class class)co 7405  cc 11104  0cc0 11106  1c1 11107   + caddc 11109  cmin 11440  0cn0 12468  cz 12554  ...cfz 13480  ..^cfzo 13623  chash 14286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator