MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp Structured version   Visualization version   GIF version

Theorem rlimcnp 26315
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp.a (𝜑𝐴 ⊆ (0[,)+∞))
rlimcnp.0 (𝜑 → 0 ∈ 𝐴)
rlimcnp.b (𝜑𝐵 ⊆ ℝ+)
rlimcnp.r ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
rlimcnp.d ((𝜑𝑥 ∈ ℝ+) → (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
rlimcnp.c (𝑥 = 0 → 𝑅 = 𝐶)
rlimcnp.s (𝑥 = (1 / 𝑦) → 𝑅 = 𝑆)
rlimcnp.j 𝐽 = (TopOpen‘ℂfld)
rlimcnp.k 𝐾 = (𝐽t 𝐴)
Assertion
Ref Expression
rlimcnp (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘0)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem rlimcnp
Dummy variables 𝑤 𝑟 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpreccl 12941 . . . . . . . . 9 (𝑟 ∈ ℝ+ → (1 / 𝑟) ∈ ℝ+)
21adantl 482 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → (1 / 𝑟) ∈ ℝ+)
3 rpreccl 12941 . . . . . . . . 9 (𝑡 ∈ ℝ+ → (1 / 𝑡) ∈ ℝ+)
4 rpcnne0 12933 . . . . . . . . . . . 12 (𝑡 ∈ ℝ+ → (𝑡 ∈ ℂ ∧ 𝑡 ≠ 0))
54adantl 482 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → (𝑡 ∈ ℂ ∧ 𝑡 ≠ 0))
6 recrec 11852 . . . . . . . . . . 11 ((𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → (1 / (1 / 𝑡)) = 𝑡)
75, 6syl 17 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (1 / (1 / 𝑡)) = 𝑡)
87eqcomd 2742 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑡 = (1 / (1 / 𝑡)))
9 oveq2 7365 . . . . . . . . . 10 (𝑟 = (1 / 𝑡) → (1 / 𝑟) = (1 / (1 / 𝑡)))
109rspceeqv 3595 . . . . . . . . 9 (((1 / 𝑡) ∈ ℝ+𝑡 = (1 / (1 / 𝑡))) → ∃𝑟 ∈ ℝ+ 𝑡 = (1 / 𝑟))
113, 8, 10syl2an2 684 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → ∃𝑟 ∈ ℝ+ 𝑡 = (1 / 𝑟))
12 simpr 485 . . . . . . . . . . 11 ((𝜑𝑡 = (1 / 𝑟)) → 𝑡 = (1 / 𝑟))
1312breq1d 5115 . . . . . . . . . 10 ((𝜑𝑡 = (1 / 𝑟)) → (𝑡 < 𝑦 ↔ (1 / 𝑟) < 𝑦))
1413imbi1d 341 . . . . . . . . 9 ((𝜑𝑡 = (1 / 𝑟)) → ((𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
1514ralbidv 3174 . . . . . . . 8 ((𝜑𝑡 = (1 / 𝑟)) → (∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
162, 11, 15rexxfrd 5364 . . . . . . 7 (𝜑 → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
1716adantr 481 . . . . . 6 ((𝜑𝑧 ∈ ℝ+) → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
18 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑟 ∈ ℝ+)
19 rlimcnp.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ ℝ+)
2019sselda 3944 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → 𝑦 ∈ ℝ+)
2120adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ+)
22 elrp 12917 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+ ↔ (𝑟 ∈ ℝ ∧ 0 < 𝑟))
23 elrp 12917 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦))
24 ltrec1 12042 . . . . . . . . . . . . . 14 (((𝑟 ∈ ℝ ∧ 0 < 𝑟) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟))
2522, 23, 24syl2anb 598 . . . . . . . . . . . . 13 ((𝑟 ∈ ℝ+𝑦 ∈ ℝ+) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟))
2618, 21, 25syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟))
2726imbi1d 341 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → (((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
2827ralbidva 3172 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
2928adantlr 713 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
30 rpcn 12925 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
31 rpne0 12931 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+𝑦 ≠ 0)
3230, 31recrecd 11928 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → (1 / (1 / 𝑦)) = 𝑦)
3320, 32syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → (1 / (1 / 𝑦)) = 𝑦)
34 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → 𝑦𝐵)
3533, 34eqeltrd 2838 . . . . . . . . . . . . 13 ((𝜑𝑦𝐵) → (1 / (1 / 𝑦)) ∈ 𝐵)
36 eleq1 2825 . . . . . . . . . . . . . . 15 (𝑥 = (1 / 𝑦) → (𝑥𝐴 ↔ (1 / 𝑦) ∈ 𝐴))
37 oveq2 7365 . . . . . . . . . . . . . . . 16 (𝑥 = (1 / 𝑦) → (1 / 𝑥) = (1 / (1 / 𝑦)))
3837eleq1d 2822 . . . . . . . . . . . . . . 15 (𝑥 = (1 / 𝑦) → ((1 / 𝑥) ∈ 𝐵 ↔ (1 / (1 / 𝑦)) ∈ 𝐵))
3936, 38bibi12d 345 . . . . . . . . . . . . . 14 (𝑥 = (1 / 𝑦) → ((𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵) ↔ ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑦)) ∈ 𝐵)))
40 rlimcnp.d . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
4140ralrimiva 3143 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ ℝ+ (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
4241adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ∀𝑥 ∈ ℝ+ (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
4320rpreccld 12967 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → (1 / 𝑦) ∈ ℝ+)
4439, 42, 43rspcdva 3582 . . . . . . . . . . . . 13 ((𝜑𝑦𝐵) → ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑦)) ∈ 𝐵))
4535, 44mpbird 256 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → (1 / 𝑦) ∈ 𝐴)
4643rpne0d 12962 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → (1 / 𝑦) ≠ 0)
47 eldifsn 4747 . . . . . . . . . . . 12 ((1 / 𝑦) ∈ (𝐴 ∖ {0}) ↔ ((1 / 𝑦) ∈ 𝐴 ∧ (1 / 𝑦) ≠ 0))
4845, 46, 47sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑦𝐵) → (1 / 𝑦) ∈ (𝐴 ∖ {0}))
49 eldifi 4086 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥𝐴)
5049adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥𝐴)
51 rge0ssre 13373 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ ℝ
52 rlimcnp.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ (0[,)+∞))
5352ssdifssd 4102 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∖ {0}) ⊆ (0[,)+∞))
5453sselda 3944 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ (0[,)+∞))
5551, 54sselid 3942 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ ℝ)
56 0re 11157 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
57 pnfxr 11209 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
58 elico2 13328 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < +∞)))
5956, 57, 58mp2an 690 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < +∞))
6059simp2bi 1146 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0[,)+∞) → 0 ≤ 𝑥)
6154, 60syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 0 ≤ 𝑥)
62 eldifsni 4750 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥 ≠ 0)
6362adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ≠ 0)
6455, 61, 63ne0gt0d 11292 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 0 < 𝑥)
6555, 64elrpd 12954 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ ℝ+)
6665, 40syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
6750, 66mpbid 231 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → (1 / 𝑥) ∈ 𝐵)
68 rpcn 12925 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
69 rpne0 12931 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ≠ 0)
7068, 69recrecd 11928 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (1 / (1 / 𝑥)) = 𝑥)
7165, 70syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → (1 / (1 / 𝑥)) = 𝑥)
7271eqcomd 2742 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 = (1 / (1 / 𝑥)))
73 oveq2 7365 . . . . . . . . . . . . 13 (𝑦 = (1 / 𝑥) → (1 / 𝑦) = (1 / (1 / 𝑥)))
7473rspceeqv 3595 . . . . . . . . . . . 12 (((1 / 𝑥) ∈ 𝐵𝑥 = (1 / (1 / 𝑥))) → ∃𝑦𝐵 𝑥 = (1 / 𝑦))
7567, 72, 74syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → ∃𝑦𝐵 𝑥 = (1 / 𝑦))
76 breq1 5108 . . . . . . . . . . . . 13 (𝑥 = (1 / 𝑦) → (𝑥 < 𝑟 ↔ (1 / 𝑦) < 𝑟))
77 rlimcnp.s . . . . . . . . . . . . . . 15 (𝑥 = (1 / 𝑦) → 𝑅 = 𝑆)
7877fvoveq1d 7379 . . . . . . . . . . . . . 14 (𝑥 = (1 / 𝑦) → (abs‘(𝑅𝐶)) = (abs‘(𝑆𝐶)))
7978breq1d 5115 . . . . . . . . . . . . 13 (𝑥 = (1 / 𝑦) → ((abs‘(𝑅𝐶)) < 𝑧 ↔ (abs‘(𝑆𝐶)) < 𝑧))
8076, 79imbi12d 344 . . . . . . . . . . . 12 (𝑥 = (1 / 𝑦) → ((𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8180adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 = (1 / 𝑦)) → ((𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8248, 75, 81ralxfrd 5363 . . . . . . . . . 10 (𝜑 → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8382ad2antrr 724 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8429, 83bitr4d 281 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
85 elsni 4603 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {0} → 𝑥 = 0)
8685adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 𝑥 = 0)
87 rlimcnp.c . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → 𝑅 = 𝐶)
8886, 87syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 𝑅 = 𝐶)
8988oveq1d 7372 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑅𝐶) = (𝐶𝐶))
9087eleq1d 2822 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (𝑅 ∈ ℂ ↔ 𝐶 ∈ ℂ))
91 rlimcnp.r . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
9291ralrimiva 3143 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝐴 𝑅 ∈ ℂ)
93 rlimcnp.0 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ 𝐴)
9490, 92, 93rspcdva 3582 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℂ)
9594subidd 11500 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶𝐶) = 0)
9695ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝐶𝐶) = 0)
9789, 96eqtrd 2776 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑅𝐶) = 0)
9897abs00bd 15176 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (abs‘(𝑅𝐶)) = 0)
99 rpgt0 12927 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+ → 0 < 𝑧)
10099ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 0 < 𝑧)
10198, 100eqbrtrd 5127 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (abs‘(𝑅𝐶)) < 𝑧)
102101a1d 25 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))
103102ralrimiva 3143 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ+) → ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))
104103adantr 481 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))
105104biantrud 532 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ∧ ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))))
106 ralunb 4151 . . . . . . . . 9 (∀𝑥 ∈ ((𝐴 ∖ {0}) ∪ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ∧ ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
107105, 106bitr4di 288 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑥 ∈ ((𝐴 ∖ {0}) ∪ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
108 undif1 4435 . . . . . . . . . 10 ((𝐴 ∖ {0}) ∪ {0}) = (𝐴 ∪ {0})
10993ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → 0 ∈ 𝐴)
110109snssd 4769 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → {0} ⊆ 𝐴)
111 ssequn2 4143 . . . . . . . . . . 11 ({0} ⊆ 𝐴 ↔ (𝐴 ∪ {0}) = 𝐴)
112110, 111sylib 217 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (𝐴 ∪ {0}) = 𝐴)
113108, 112eqtrid 2788 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → ((𝐴 ∖ {0}) ∪ {0}) = 𝐴)
114113raleqdv 3313 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ ((𝐴 ∖ {0}) ∪ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
11584, 107, 1143bitrd 304 . . . . . . 7 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
116115rexbidva 3173 . . . . . 6 ((𝜑𝑧 ∈ ℝ+) → (∃𝑟 ∈ ℝ+𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
11717, 116bitrd 278 . . . . 5 ((𝜑𝑧 ∈ ℝ+) → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
118117ralbidva 3172 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
119 nfv 1917 . . . . . . . . 9 𝑥(𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟
120 nffvmpt1 6853 . . . . . . . . . . 11 𝑥((𝑥𝐴𝑅)‘𝑤)
121 nfcv 2907 . . . . . . . . . . 11 𝑥(abs ∘ − )
122 nffvmpt1 6853 . . . . . . . . . . 11 𝑥((𝑥𝐴𝑅)‘0)
123120, 121, 122nfov 7387 . . . . . . . . . 10 𝑥(((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0))
124 nfcv 2907 . . . . . . . . . 10 𝑥 <
125 nfcv 2907 . . . . . . . . . 10 𝑥𝑧
126123, 124, 125nfbr 5152 . . . . . . . . 9 𝑥(((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧
127119, 126nfim 1899 . . . . . . . 8 𝑥((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧)
128 nfv 1917 . . . . . . . 8 𝑤((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧)
129 oveq1 7364 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0))
130129breq1d 5115 . . . . . . . . 9 (𝑤 = 𝑥 → ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 ↔ (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟))
131 fveq2 6842 . . . . . . . . . . 11 (𝑤 = 𝑥 → ((𝑥𝐴𝑅)‘𝑤) = ((𝑥𝐴𝑅)‘𝑥))
132131oveq1d 7372 . . . . . . . . . 10 (𝑤 = 𝑥 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) = (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)))
133132breq1d 5115 . . . . . . . . 9 (𝑤 = 𝑥 → ((((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧 ↔ (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))
134130, 133imbi12d 344 . . . . . . . 8 (𝑤 = 𝑥 → (((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧)))
135127, 128, 134cbvralw 3289 . . . . . . 7 (∀𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑥𝐴 ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))
136 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥𝐴)
13793adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ∈ 𝐴)
138136, 137ovresd 7521 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (𝑥(abs ∘ − )0))
13952, 51sstrdi 3956 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
140 ax-resscn 11108 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
141139, 140sstrdi 3956 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℂ)
142141sselda 3944 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
143 0cnd 11148 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ∈ ℂ)
144 eqid 2736 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
145144cnmetdval 24134 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
146142, 143, 145syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
147142subid1d 11501 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝑥 − 0) = 𝑥)
148147fveq2d 6846 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘(𝑥 − 0)) = (abs‘𝑥))
149138, 146, 1483eqtrd 2780 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (abs‘𝑥))
150139sselda 3944 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
15152sselda 3944 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥 ∈ (0[,)+∞))
152151, 60syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ 𝑥)
153150, 152absidd 15307 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘𝑥) = 𝑥)
154149, 153eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = 𝑥)
155154breq1d 5115 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟𝑥 < 𝑟))
156 eqid 2736 . . . . . . . . . . . . . 14 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
157156fvmpt2 6959 . . . . . . . . . . . . 13 ((𝑥𝐴𝑅 ∈ ℂ) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
158136, 91, 157syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
15994adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
160156, 87, 137, 159fvmptd3 6971 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑥𝐴𝑅)‘0) = 𝐶)
161158, 160oveq12d 7375 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) = (𝑅(abs ∘ − )𝐶))
162144cnmetdval 24134 . . . . . . . . . . . 12 ((𝑅 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
16391, 159, 162syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
164161, 163eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) = (abs‘(𝑅𝐶)))
165164breq1d 5115 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧 ↔ (abs‘(𝑅𝐶)) < 𝑧))
166155, 165imbi12d 344 . . . . . . . 8 ((𝜑𝑥𝐴) → (((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
167166ralbidva 3172 . . . . . . 7 (𝜑 → (∀𝑥𝐴 ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
168135, 167bitrid 282 . . . . . 6 (𝜑 → (∀𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
169168rexbidv 3175 . . . . 5 (𝜑 → (∃𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
170169ralbidv 3174 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
17191fmpttd 7063 . . . . 5 (𝜑 → (𝑥𝐴𝑅):𝐴⟶ℂ)
172171biantrurd 533 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
173118, 170, 1723bitr2d 306 . . 3 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
17477eleq1d 2822 . . . . . . . 8 (𝑥 = (1 / 𝑦) → (𝑅 ∈ ℂ ↔ 𝑆 ∈ ℂ))
17592adantr 481 . . . . . . . 8 ((𝜑𝑦𝐵) → ∀𝑥𝐴 𝑅 ∈ ℂ)
176174, 175, 45rspcdva 3582 . . . . . . 7 ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
177176ralrimiva 3143 . . . . . 6 (𝜑 → ∀𝑦𝐵 𝑆 ∈ ℂ)
178 rpssre 12922 . . . . . . 7 + ⊆ ℝ
17919, 178sstrdi 3956 . . . . . 6 (𝜑𝐵 ⊆ ℝ)
180 1red 11156 . . . . . 6 (𝜑 → 1 ∈ ℝ)
181177, 179, 94, 180rlim3 15380 . . . . 5 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
182 0xr 11202 . . . . . . . . . 10 0 ∈ ℝ*
183 0lt1 11677 . . . . . . . . . 10 0 < 1
184 df-ioo 13268 . . . . . . . . . . 11 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
185 df-ico 13270 . . . . . . . . . . 11 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
186 xrltletr 13076 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤))
187184, 185, 186ixxss1 13282 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆ (0(,)+∞))
188182, 183, 187mp2an 690 . . . . . . . . 9 (1[,)+∞) ⊆ (0(,)+∞)
189 ioorp 13342 . . . . . . . . 9 (0(,)+∞) = ℝ+
190188, 189sseqtri 3980 . . . . . . . 8 (1[,)+∞) ⊆ ℝ+
191 ssrexv 4011 . . . . . . . 8 ((1[,)+∞) ⊆ ℝ+ → (∃𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
192190, 191ax-mp 5 . . . . . . 7 (∃𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧))
193 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑡 ∈ ℝ+)
194178, 193sselid 3942 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑡 ∈ ℝ)
195179adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ⊆ ℝ)
196195sselda 3944 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
197 ltle 11243 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑡 < 𝑦𝑡𝑦))
198194, 196, 197syl2anc 584 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → (𝑡 < 𝑦𝑡𝑦))
199198imim1d 82 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → ((𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
200199ralimdva 3164 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
201200reximdva 3165 . . . . . . 7 (𝜑 → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
202192, 201syl5 34 . . . . . 6 (𝜑 → (∃𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
203202ralimdv 3166 . . . . 5 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
204181, 203sylbid 239 . . . 4 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 → ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
205 ssrexv 4011 . . . . . . 7 (ℝ+ ⊆ ℝ → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
206178, 205ax-mp 5 . . . . . 6 (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧))
207206ralimi 3086 . . . . 5 (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧))
208177, 179, 94rlim2lt 15379 . . . . 5 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
209207, 208syl5ibr 245 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → (𝑦𝐵𝑆) ⇝𝑟 𝐶))
210204, 209impbid 211 . . 3 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
211 cnxmet 24136 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
212 xmetres2 23714 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
213211, 141, 212sylancr 587 . . . 4 (𝜑 → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
214211a1i 11 . . . 4 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
215 eqid 2736 . . . . 5 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
216 rlimcnp.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
217216cnfldtopn 24145 . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
218215, 217metcnp2 23898 . . . 4 ((((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ 𝐴) → ((𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
219213, 214, 93, 218syl3anc 1371 . . 3 (𝜑 → ((𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
220173, 210, 2193bitr4d 310 . 2 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0)))
221 rlimcnp.k . . . . . 6 𝐾 = (𝐽t 𝐴)
222 eqid 2736 . . . . . . . 8 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
223222, 217, 215metrest 23880 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
224211, 141, 223sylancr 587 . . . . . 6 (𝜑 → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
225221, 224eqtrid 2788 . . . . 5 (𝜑𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
226225oveq1d 7372 . . . 4 (𝜑 → (𝐾 CnP 𝐽) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽))
227226fveq1d 6844 . . 3 (𝜑 → ((𝐾 CnP 𝐽)‘0) = (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0))
228227eleq2d 2823 . 2 (𝜑 → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘0) ↔ (𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0)))
229220, 228bitr4d 281 1 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  cdif 3907  cun 3908  wss 3910  {csn 4586   class class class wbr 5105  cmpt 5188   × cxp 5631  cres 5635  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  +crp 12915  (,)cioo 13264  [,)cico 13266  abscabs 15119  𝑟 crli 15367  t crest 17302  TopOpenctopn 17303  ∞Metcxmet 20781  MetOpencmopn 20786  fldccnfld 20796   CnP ccnp 22576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-rlim 15371  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-bases 22296  df-cnp 22579
This theorem is referenced by:  rlimcnp2  26316
  Copyright terms: Public domain W3C validator