MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp Structured version   Visualization version   GIF version

Theorem rlimcnp 26932
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp.a (𝜑𝐴 ⊆ (0[,)+∞))
rlimcnp.0 (𝜑 → 0 ∈ 𝐴)
rlimcnp.b (𝜑𝐵 ⊆ ℝ+)
rlimcnp.r ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
rlimcnp.d ((𝜑𝑥 ∈ ℝ+) → (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
rlimcnp.c (𝑥 = 0 → 𝑅 = 𝐶)
rlimcnp.s (𝑥 = (1 / 𝑦) → 𝑅 = 𝑆)
rlimcnp.j 𝐽 = (TopOpen‘ℂfld)
rlimcnp.k 𝐾 = (𝐽t 𝐴)
Assertion
Ref Expression
rlimcnp (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘0)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem rlimcnp
Dummy variables 𝑤 𝑟 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpreccl 13040 . . . . . . . . 9 (𝑟 ∈ ℝ+ → (1 / 𝑟) ∈ ℝ+)
21adantl 481 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → (1 / 𝑟) ∈ ℝ+)
3 rpreccl 13040 . . . . . . . . 9 (𝑡 ∈ ℝ+ → (1 / 𝑡) ∈ ℝ+)
4 rpcnne0 13032 . . . . . . . . . . . 12 (𝑡 ∈ ℝ+ → (𝑡 ∈ ℂ ∧ 𝑡 ≠ 0))
54adantl 481 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → (𝑡 ∈ ℂ ∧ 𝑡 ≠ 0))
6 recrec 11943 . . . . . . . . . . 11 ((𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → (1 / (1 / 𝑡)) = 𝑡)
75, 6syl 17 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (1 / (1 / 𝑡)) = 𝑡)
87eqcomd 2742 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑡 = (1 / (1 / 𝑡)))
9 oveq2 7418 . . . . . . . . . 10 (𝑟 = (1 / 𝑡) → (1 / 𝑟) = (1 / (1 / 𝑡)))
109rspceeqv 3629 . . . . . . . . 9 (((1 / 𝑡) ∈ ℝ+𝑡 = (1 / (1 / 𝑡))) → ∃𝑟 ∈ ℝ+ 𝑡 = (1 / 𝑟))
113, 8, 10syl2an2 686 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → ∃𝑟 ∈ ℝ+ 𝑡 = (1 / 𝑟))
12 simpr 484 . . . . . . . . . . 11 ((𝜑𝑡 = (1 / 𝑟)) → 𝑡 = (1 / 𝑟))
1312breq1d 5134 . . . . . . . . . 10 ((𝜑𝑡 = (1 / 𝑟)) → (𝑡 < 𝑦 ↔ (1 / 𝑟) < 𝑦))
1413imbi1d 341 . . . . . . . . 9 ((𝜑𝑡 = (1 / 𝑟)) → ((𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
1514ralbidv 3164 . . . . . . . 8 ((𝜑𝑡 = (1 / 𝑟)) → (∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
162, 11, 15rexxfrd 5384 . . . . . . 7 (𝜑 → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
1716adantr 480 . . . . . 6 ((𝜑𝑧 ∈ ℝ+) → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
18 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑟 ∈ ℝ+)
19 rlimcnp.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ ℝ+)
2019sselda 3963 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → 𝑦 ∈ ℝ+)
2120adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ+)
22 elrp 13015 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+ ↔ (𝑟 ∈ ℝ ∧ 0 < 𝑟))
23 elrp 13015 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦))
24 ltrec1 12134 . . . . . . . . . . . . . 14 (((𝑟 ∈ ℝ ∧ 0 < 𝑟) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟))
2522, 23, 24syl2anb 598 . . . . . . . . . . . . 13 ((𝑟 ∈ ℝ+𝑦 ∈ ℝ+) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟))
2618, 21, 25syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟))
2726imbi1d 341 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → (((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
2827ralbidva 3162 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
2928adantlr 715 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
30 rpcn 13024 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
31 rpne0 13030 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+𝑦 ≠ 0)
3230, 31recrecd 12019 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → (1 / (1 / 𝑦)) = 𝑦)
3320, 32syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → (1 / (1 / 𝑦)) = 𝑦)
34 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → 𝑦𝐵)
3533, 34eqeltrd 2835 . . . . . . . . . . . . 13 ((𝜑𝑦𝐵) → (1 / (1 / 𝑦)) ∈ 𝐵)
36 eleq1 2823 . . . . . . . . . . . . . . 15 (𝑥 = (1 / 𝑦) → (𝑥𝐴 ↔ (1 / 𝑦) ∈ 𝐴))
37 oveq2 7418 . . . . . . . . . . . . . . . 16 (𝑥 = (1 / 𝑦) → (1 / 𝑥) = (1 / (1 / 𝑦)))
3837eleq1d 2820 . . . . . . . . . . . . . . 15 (𝑥 = (1 / 𝑦) → ((1 / 𝑥) ∈ 𝐵 ↔ (1 / (1 / 𝑦)) ∈ 𝐵))
3936, 38bibi12d 345 . . . . . . . . . . . . . 14 (𝑥 = (1 / 𝑦) → ((𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵) ↔ ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑦)) ∈ 𝐵)))
40 rlimcnp.d . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
4140ralrimiva 3133 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ ℝ+ (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
4241adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ∀𝑥 ∈ ℝ+ (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
4320rpreccld 13066 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → (1 / 𝑦) ∈ ℝ+)
4439, 42, 43rspcdva 3607 . . . . . . . . . . . . 13 ((𝜑𝑦𝐵) → ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑦)) ∈ 𝐵))
4535, 44mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → (1 / 𝑦) ∈ 𝐴)
4643rpne0d 13061 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → (1 / 𝑦) ≠ 0)
47 eldifsn 4767 . . . . . . . . . . . 12 ((1 / 𝑦) ∈ (𝐴 ∖ {0}) ↔ ((1 / 𝑦) ∈ 𝐴 ∧ (1 / 𝑦) ≠ 0))
4845, 46, 47sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑦𝐵) → (1 / 𝑦) ∈ (𝐴 ∖ {0}))
49 eldifi 4111 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥𝐴)
5049adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥𝐴)
51 rge0ssre 13478 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ ℝ
52 rlimcnp.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ (0[,)+∞))
5352ssdifssd 4127 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∖ {0}) ⊆ (0[,)+∞))
5453sselda 3963 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ (0[,)+∞))
5551, 54sselid 3961 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ ℝ)
56 0re 11242 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
57 pnfxr 11294 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
58 elico2 13432 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < +∞)))
5956, 57, 58mp2an 692 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < +∞))
6059simp2bi 1146 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0[,)+∞) → 0 ≤ 𝑥)
6154, 60syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 0 ≤ 𝑥)
62 eldifsni 4771 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥 ≠ 0)
6362adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ≠ 0)
6455, 61, 63ne0gt0d 11377 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 0 < 𝑥)
6555, 64elrpd 13053 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ ℝ+)
6665, 40syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
6750, 66mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → (1 / 𝑥) ∈ 𝐵)
68 rpcn 13024 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
69 rpne0 13030 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ≠ 0)
7068, 69recrecd 12019 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (1 / (1 / 𝑥)) = 𝑥)
7165, 70syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → (1 / (1 / 𝑥)) = 𝑥)
7271eqcomd 2742 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 = (1 / (1 / 𝑥)))
73 oveq2 7418 . . . . . . . . . . . . 13 (𝑦 = (1 / 𝑥) → (1 / 𝑦) = (1 / (1 / 𝑥)))
7473rspceeqv 3629 . . . . . . . . . . . 12 (((1 / 𝑥) ∈ 𝐵𝑥 = (1 / (1 / 𝑥))) → ∃𝑦𝐵 𝑥 = (1 / 𝑦))
7567, 72, 74syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → ∃𝑦𝐵 𝑥 = (1 / 𝑦))
76 breq1 5127 . . . . . . . . . . . . 13 (𝑥 = (1 / 𝑦) → (𝑥 < 𝑟 ↔ (1 / 𝑦) < 𝑟))
77 rlimcnp.s . . . . . . . . . . . . . . 15 (𝑥 = (1 / 𝑦) → 𝑅 = 𝑆)
7877fvoveq1d 7432 . . . . . . . . . . . . . 14 (𝑥 = (1 / 𝑦) → (abs‘(𝑅𝐶)) = (abs‘(𝑆𝐶)))
7978breq1d 5134 . . . . . . . . . . . . 13 (𝑥 = (1 / 𝑦) → ((abs‘(𝑅𝐶)) < 𝑧 ↔ (abs‘(𝑆𝐶)) < 𝑧))
8076, 79imbi12d 344 . . . . . . . . . . . 12 (𝑥 = (1 / 𝑦) → ((𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8180adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 = (1 / 𝑦)) → ((𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8248, 75, 81ralxfrd 5383 . . . . . . . . . 10 (𝜑 → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8382ad2antrr 726 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8429, 83bitr4d 282 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
85 elsni 4623 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {0} → 𝑥 = 0)
8685adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 𝑥 = 0)
87 rlimcnp.c . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → 𝑅 = 𝐶)
8886, 87syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 𝑅 = 𝐶)
8988oveq1d 7425 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑅𝐶) = (𝐶𝐶))
9087eleq1d 2820 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (𝑅 ∈ ℂ ↔ 𝐶 ∈ ℂ))
91 rlimcnp.r . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
9291ralrimiva 3133 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝐴 𝑅 ∈ ℂ)
93 rlimcnp.0 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ 𝐴)
9490, 92, 93rspcdva 3607 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℂ)
9594subidd 11587 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶𝐶) = 0)
9695ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝐶𝐶) = 0)
9789, 96eqtrd 2771 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑅𝐶) = 0)
9897abs00bd 15315 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (abs‘(𝑅𝐶)) = 0)
99 rpgt0 13026 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+ → 0 < 𝑧)
10099ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 0 < 𝑧)
10198, 100eqbrtrd 5146 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (abs‘(𝑅𝐶)) < 𝑧)
102101a1d 25 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))
103102ralrimiva 3133 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ+) → ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))
104103adantr 480 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))
105104biantrud 531 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ∧ ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))))
106 ralunb 4177 . . . . . . . . 9 (∀𝑥 ∈ ((𝐴 ∖ {0}) ∪ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ∧ ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
107105, 106bitr4di 289 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑥 ∈ ((𝐴 ∖ {0}) ∪ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
108 undif1 4456 . . . . . . . . . 10 ((𝐴 ∖ {0}) ∪ {0}) = (𝐴 ∪ {0})
10993ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → 0 ∈ 𝐴)
110109snssd 4790 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → {0} ⊆ 𝐴)
111 ssequn2 4169 . . . . . . . . . . 11 ({0} ⊆ 𝐴 ↔ (𝐴 ∪ {0}) = 𝐴)
112110, 111sylib 218 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (𝐴 ∪ {0}) = 𝐴)
113108, 112eqtrid 2783 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → ((𝐴 ∖ {0}) ∪ {0}) = 𝐴)
114113raleqdv 3309 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ ((𝐴 ∖ {0}) ∪ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
11584, 107, 1143bitrd 305 . . . . . . 7 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
116115rexbidva 3163 . . . . . 6 ((𝜑𝑧 ∈ ℝ+) → (∃𝑟 ∈ ℝ+𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
11717, 116bitrd 279 . . . . 5 ((𝜑𝑧 ∈ ℝ+) → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
118117ralbidva 3162 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
119 nfv 1914 . . . . . . . . 9 𝑥(𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟
120 nffvmpt1 6892 . . . . . . . . . . 11 𝑥((𝑥𝐴𝑅)‘𝑤)
121 nfcv 2899 . . . . . . . . . . 11 𝑥(abs ∘ − )
122 nffvmpt1 6892 . . . . . . . . . . 11 𝑥((𝑥𝐴𝑅)‘0)
123120, 121, 122nfov 7440 . . . . . . . . . 10 𝑥(((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0))
124 nfcv 2899 . . . . . . . . . 10 𝑥 <
125 nfcv 2899 . . . . . . . . . 10 𝑥𝑧
126123, 124, 125nfbr 5171 . . . . . . . . 9 𝑥(((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧
127119, 126nfim 1896 . . . . . . . 8 𝑥((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧)
128 nfv 1914 . . . . . . . 8 𝑤((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧)
129 oveq1 7417 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0))
130129breq1d 5134 . . . . . . . . 9 (𝑤 = 𝑥 → ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 ↔ (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟))
131 fveq2 6881 . . . . . . . . . . 11 (𝑤 = 𝑥 → ((𝑥𝐴𝑅)‘𝑤) = ((𝑥𝐴𝑅)‘𝑥))
132131oveq1d 7425 . . . . . . . . . 10 (𝑤 = 𝑥 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) = (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)))
133132breq1d 5134 . . . . . . . . 9 (𝑤 = 𝑥 → ((((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧 ↔ (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))
134130, 133imbi12d 344 . . . . . . . 8 (𝑤 = 𝑥 → (((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧)))
135127, 128, 134cbvralw 3290 . . . . . . 7 (∀𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑥𝐴 ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))
136 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥𝐴)
13793adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ∈ 𝐴)
138136, 137ovresd 7579 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (𝑥(abs ∘ − )0))
13952, 51sstrdi 3976 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
140 ax-resscn 11191 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
141139, 140sstrdi 3976 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℂ)
142141sselda 3963 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
143 0cnd 11233 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ∈ ℂ)
144 eqid 2736 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
145144cnmetdval 24714 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
146142, 143, 145syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
147142subid1d 11588 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝑥 − 0) = 𝑥)
148147fveq2d 6885 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘(𝑥 − 0)) = (abs‘𝑥))
149138, 146, 1483eqtrd 2775 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (abs‘𝑥))
150139sselda 3963 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
15152sselda 3963 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥 ∈ (0[,)+∞))
152151, 60syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ 𝑥)
153150, 152absidd 15446 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘𝑥) = 𝑥)
154149, 153eqtrd 2771 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = 𝑥)
155154breq1d 5134 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟𝑥 < 𝑟))
156 eqid 2736 . . . . . . . . . . . . . 14 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
157156fvmpt2 7002 . . . . . . . . . . . . 13 ((𝑥𝐴𝑅 ∈ ℂ) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
158136, 91, 157syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
15994adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
160156, 87, 137, 159fvmptd3 7014 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑥𝐴𝑅)‘0) = 𝐶)
161158, 160oveq12d 7428 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) = (𝑅(abs ∘ − )𝐶))
162144cnmetdval 24714 . . . . . . . . . . . 12 ((𝑅 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
16391, 159, 162syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
164161, 163eqtrd 2771 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) = (abs‘(𝑅𝐶)))
165164breq1d 5134 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧 ↔ (abs‘(𝑅𝐶)) < 𝑧))
166155, 165imbi12d 344 . . . . . . . 8 ((𝜑𝑥𝐴) → (((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
167166ralbidva 3162 . . . . . . 7 (𝜑 → (∀𝑥𝐴 ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
168135, 167bitrid 283 . . . . . 6 (𝜑 → (∀𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
169168rexbidv 3165 . . . . 5 (𝜑 → (∃𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
170169ralbidv 3164 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
17191fmpttd 7110 . . . . 5 (𝜑 → (𝑥𝐴𝑅):𝐴⟶ℂ)
172171biantrurd 532 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
173118, 170, 1723bitr2d 307 . . 3 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
17477eleq1d 2820 . . . . . . . 8 (𝑥 = (1 / 𝑦) → (𝑅 ∈ ℂ ↔ 𝑆 ∈ ℂ))
17592adantr 480 . . . . . . . 8 ((𝜑𝑦𝐵) → ∀𝑥𝐴 𝑅 ∈ ℂ)
176174, 175, 45rspcdva 3607 . . . . . . 7 ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
177176ralrimiva 3133 . . . . . 6 (𝜑 → ∀𝑦𝐵 𝑆 ∈ ℂ)
178 rpssre 13021 . . . . . . 7 + ⊆ ℝ
17919, 178sstrdi 3976 . . . . . 6 (𝜑𝐵 ⊆ ℝ)
180 1red 11241 . . . . . 6 (𝜑 → 1 ∈ ℝ)
181177, 179, 94, 180rlim3 15519 . . . . 5 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
182 0xr 11287 . . . . . . . . . 10 0 ∈ ℝ*
183 0lt1 11764 . . . . . . . . . 10 0 < 1
184 df-ioo 13371 . . . . . . . . . . 11 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
185 df-ico 13373 . . . . . . . . . . 11 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
186 xrltletr 13178 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤))
187184, 185, 186ixxss1 13385 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆ (0(,)+∞))
188182, 183, 187mp2an 692 . . . . . . . . 9 (1[,)+∞) ⊆ (0(,)+∞)
189 ioorp 13447 . . . . . . . . 9 (0(,)+∞) = ℝ+
190188, 189sseqtri 4012 . . . . . . . 8 (1[,)+∞) ⊆ ℝ+
191 ssrexv 4033 . . . . . . . 8 ((1[,)+∞) ⊆ ℝ+ → (∃𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
192190, 191ax-mp 5 . . . . . . 7 (∃𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧))
193 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑡 ∈ ℝ+)
194178, 193sselid 3961 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑡 ∈ ℝ)
195179adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ⊆ ℝ)
196195sselda 3963 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
197 ltle 11328 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑡 < 𝑦𝑡𝑦))
198194, 196, 197syl2anc 584 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → (𝑡 < 𝑦𝑡𝑦))
199198imim1d 82 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → ((𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
200199ralimdva 3153 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
201200reximdva 3154 . . . . . . 7 (𝜑 → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
202192, 201syl5 34 . . . . . 6 (𝜑 → (∃𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
203202ralimdv 3155 . . . . 5 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
204181, 203sylbid 240 . . . 4 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 → ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
205 ssrexv 4033 . . . . . . 7 (ℝ+ ⊆ ℝ → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
206178, 205ax-mp 5 . . . . . 6 (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧))
207206ralimi 3074 . . . . 5 (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧))
208177, 179, 94rlim2lt 15518 . . . . 5 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
209207, 208imbitrrid 246 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → (𝑦𝐵𝑆) ⇝𝑟 𝐶))
210204, 209impbid 212 . . 3 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
211 cnxmet 24716 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
212 xmetres2 24305 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
213211, 141, 212sylancr 587 . . . 4 (𝜑 → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
214211a1i 11 . . . 4 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
215 eqid 2736 . . . . 5 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
216 rlimcnp.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
217216cnfldtopn 24725 . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
218215, 217metcnp2 24486 . . . 4 ((((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ 𝐴) → ((𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
219213, 214, 93, 218syl3anc 1373 . . 3 (𝜑 → ((𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
220173, 210, 2193bitr4d 311 . 2 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0)))
221 rlimcnp.k . . . . . 6 𝐾 = (𝐽t 𝐴)
222 eqid 2736 . . . . . . . 8 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
223222, 217, 215metrest 24468 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
224211, 141, 223sylancr 587 . . . . . 6 (𝜑 → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
225221, 224eqtrid 2783 . . . . 5 (𝜑𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
226225oveq1d 7425 . . . 4 (𝜑 → (𝐾 CnP 𝐽) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽))
227226fveq1d 6883 . . 3 (𝜑 → ((𝐾 CnP 𝐽)‘0) = (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0))
228227eleq2d 2821 . 2 (𝜑 → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘0) ↔ (𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0)))
229220, 228bitr4d 282 1 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  cdif 3928  cun 3929  wss 3931  {csn 4606   class class class wbr 5124  cmpt 5206   × cxp 5657  cres 5661  ccom 5663  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135  +∞cpnf 11271  *cxr 11273   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  +crp 13013  (,)cioo 13367  [,)cico 13369  abscabs 15258  𝑟 crli 15506  t crest 17439  TopOpenctopn 17440  ∞Metcxmet 21305  MetOpencmopn 21310  fldccnfld 21320   CnP ccnp 23168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-rlim 15510  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-rest 17441  df-topn 17442  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-bases 22889  df-cnp 23171
This theorem is referenced by:  rlimcnp2  26933
  Copyright terms: Public domain W3C validator