Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp Structured version   Visualization version   GIF version

Theorem rlimcnp 25144
 Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp.a (𝜑𝐴 ⊆ (0[,)+∞))
rlimcnp.0 (𝜑 → 0 ∈ 𝐴)
rlimcnp.b (𝜑𝐵 ⊆ ℝ+)
rlimcnp.r ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
rlimcnp.d ((𝜑𝑥 ∈ ℝ+) → (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
rlimcnp.c (𝑥 = 0 → 𝑅 = 𝐶)
rlimcnp.s (𝑥 = (1 / 𝑦) → 𝑅 = 𝑆)
rlimcnp.j 𝐽 = (TopOpen‘ℂfld)
rlimcnp.k 𝐾 = (𝐽t 𝐴)
Assertion
Ref Expression
rlimcnp (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘0)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem rlimcnp
Dummy variables 𝑤 𝑟 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpreccl 12165 . . . . . . . . 9 (𝑟 ∈ ℝ+ → (1 / 𝑟) ∈ ℝ+)
21adantl 475 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → (1 / 𝑟) ∈ ℝ+)
3 rpreccl 12165 . . . . . . . . . 10 (𝑡 ∈ ℝ+ → (1 / 𝑡) ∈ ℝ+)
43adantl 475 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → (1 / 𝑡) ∈ ℝ+)
5 rpcnne0 12157 . . . . . . . . . . . 12 (𝑡 ∈ ℝ+ → (𝑡 ∈ ℂ ∧ 𝑡 ≠ 0))
65adantl 475 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → (𝑡 ∈ ℂ ∧ 𝑡 ≠ 0))
7 recrec 11072 . . . . . . . . . . 11 ((𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → (1 / (1 / 𝑡)) = 𝑡)
86, 7syl 17 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (1 / (1 / 𝑡)) = 𝑡)
98eqcomd 2784 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑡 = (1 / (1 / 𝑡)))
10 oveq2 6930 . . . . . . . . . 10 (𝑟 = (1 / 𝑡) → (1 / 𝑟) = (1 / (1 / 𝑡)))
1110rspceeqv 3529 . . . . . . . . 9 (((1 / 𝑡) ∈ ℝ+𝑡 = (1 / (1 / 𝑡))) → ∃𝑟 ∈ ℝ+ 𝑡 = (1 / 𝑟))
124, 9, 11syl2anc 579 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → ∃𝑟 ∈ ℝ+ 𝑡 = (1 / 𝑟))
13 simpr 479 . . . . . . . . . . 11 ((𝜑𝑡 = (1 / 𝑟)) → 𝑡 = (1 / 𝑟))
1413breq1d 4896 . . . . . . . . . 10 ((𝜑𝑡 = (1 / 𝑟)) → (𝑡 < 𝑦 ↔ (1 / 𝑟) < 𝑦))
1514imbi1d 333 . . . . . . . . 9 ((𝜑𝑡 = (1 / 𝑟)) → ((𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
1615ralbidv 3168 . . . . . . . 8 ((𝜑𝑡 = (1 / 𝑟)) → (∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
172, 12, 16rexxfrd 5121 . . . . . . 7 (𝜑 → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
1817adantr 474 . . . . . 6 ((𝜑𝑧 ∈ ℝ+) → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
19 simplr 759 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑟 ∈ ℝ+)
20 rlimcnp.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ ℝ+)
2120sselda 3821 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → 𝑦 ∈ ℝ+)
2221adantlr 705 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ+)
23 elrp 12139 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+ ↔ (𝑟 ∈ ℝ ∧ 0 < 𝑟))
24 elrp 12139 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦))
25 ltrec1 11264 . . . . . . . . . . . . . 14 (((𝑟 ∈ ℝ ∧ 0 < 𝑟) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟))
2623, 24, 25syl2anb 591 . . . . . . . . . . . . 13 ((𝑟 ∈ ℝ+𝑦 ∈ ℝ+) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟))
2719, 22, 26syl2anc 579 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟))
2827imbi1d 333 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → (((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
2928ralbidva 3167 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
3029adantlr 705 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
31 rpcn 12149 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
32 rpne0 12155 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+𝑦 ≠ 0)
3331, 32recrecd 11148 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → (1 / (1 / 𝑦)) = 𝑦)
3421, 33syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → (1 / (1 / 𝑦)) = 𝑦)
35 simpr 479 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → 𝑦𝐵)
3634, 35eqeltrd 2859 . . . . . . . . . . . . 13 ((𝜑𝑦𝐵) → (1 / (1 / 𝑦)) ∈ 𝐵)
37 eleq1 2847 . . . . . . . . . . . . . . 15 (𝑥 = (1 / 𝑦) → (𝑥𝐴 ↔ (1 / 𝑦) ∈ 𝐴))
38 oveq2 6930 . . . . . . . . . . . . . . . 16 (𝑥 = (1 / 𝑦) → (1 / 𝑥) = (1 / (1 / 𝑦)))
3938eleq1d 2844 . . . . . . . . . . . . . . 15 (𝑥 = (1 / 𝑦) → ((1 / 𝑥) ∈ 𝐵 ↔ (1 / (1 / 𝑦)) ∈ 𝐵))
4037, 39bibi12d 337 . . . . . . . . . . . . . 14 (𝑥 = (1 / 𝑦) → ((𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵) ↔ ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑦)) ∈ 𝐵)))
41 rlimcnp.d . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
4241ralrimiva 3148 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ ℝ+ (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
4342adantr 474 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ∀𝑥 ∈ ℝ+ (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
44 rpreccl 12165 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
4521, 44syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → (1 / 𝑦) ∈ ℝ+)
4640, 43, 45rspcdva 3517 . . . . . . . . . . . . 13 ((𝜑𝑦𝐵) → ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑦)) ∈ 𝐵))
4736, 46mpbird 249 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → (1 / 𝑦) ∈ 𝐴)
4845rpne0d 12186 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → (1 / 𝑦) ≠ 0)
49 eldifsn 4550 . . . . . . . . . . . 12 ((1 / 𝑦) ∈ (𝐴 ∖ {0}) ↔ ((1 / 𝑦) ∈ 𝐴 ∧ (1 / 𝑦) ≠ 0))
5047, 48, 49sylanbrc 578 . . . . . . . . . . 11 ((𝜑𝑦𝐵) → (1 / 𝑦) ∈ (𝐴 ∖ {0}))
51 eldifi 3955 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥𝐴)
5251adantl 475 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥𝐴)
53 rge0ssre 12594 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ ℝ
54 rlimcnp.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ (0[,)+∞))
5554ssdifssd 3971 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∖ {0}) ⊆ (0[,)+∞))
5655sselda 3821 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ (0[,)+∞))
5753, 56sseldi 3819 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ ℝ)
58 0re 10378 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
59 pnfxr 10430 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
60 elico2 12549 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < +∞)))
6158, 59, 60mp2an 682 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < +∞))
6261simp2bi 1137 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0[,)+∞) → 0 ≤ 𝑥)
6356, 62syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 0 ≤ 𝑥)
64 eldifsni 4553 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥 ≠ 0)
6564adantl 475 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ≠ 0)
6657, 63, 65ne0gt0d 10513 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 0 < 𝑥)
6757, 66elrpd 12178 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ ℝ+)
6867, 41syldan 585 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
6952, 68mpbid 224 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → (1 / 𝑥) ∈ 𝐵)
70 rpcn 12149 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
71 rpne0 12155 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ≠ 0)
7270, 71recrecd 11148 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (1 / (1 / 𝑥)) = 𝑥)
7367, 72syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → (1 / (1 / 𝑥)) = 𝑥)
7473eqcomd 2784 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 = (1 / (1 / 𝑥)))
75 oveq2 6930 . . . . . . . . . . . . 13 (𝑦 = (1 / 𝑥) → (1 / 𝑦) = (1 / (1 / 𝑥)))
7675rspceeqv 3529 . . . . . . . . . . . 12 (((1 / 𝑥) ∈ 𝐵𝑥 = (1 / (1 / 𝑥))) → ∃𝑦𝐵 𝑥 = (1 / 𝑦))
7769, 74, 76syl2anc 579 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → ∃𝑦𝐵 𝑥 = (1 / 𝑦))
78 breq1 4889 . . . . . . . . . . . . 13 (𝑥 = (1 / 𝑦) → (𝑥 < 𝑟 ↔ (1 / 𝑦) < 𝑟))
79 rlimcnp.s . . . . . . . . . . . . . . 15 (𝑥 = (1 / 𝑦) → 𝑅 = 𝑆)
8079fvoveq1d 6944 . . . . . . . . . . . . . 14 (𝑥 = (1 / 𝑦) → (abs‘(𝑅𝐶)) = (abs‘(𝑆𝐶)))
8180breq1d 4896 . . . . . . . . . . . . 13 (𝑥 = (1 / 𝑦) → ((abs‘(𝑅𝐶)) < 𝑧 ↔ (abs‘(𝑆𝐶)) < 𝑧))
8278, 81imbi12d 336 . . . . . . . . . . . 12 (𝑥 = (1 / 𝑦) → ((𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8382adantl 475 . . . . . . . . . . 11 ((𝜑𝑥 = (1 / 𝑦)) → ((𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8450, 77, 83ralxfrd 5120 . . . . . . . . . 10 (𝜑 → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8584ad2antrr 716 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8630, 85bitr4d 274 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
87 elsni 4415 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {0} → 𝑥 = 0)
8887adantl 475 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 𝑥 = 0)
89 rlimcnp.c . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → 𝑅 = 𝐶)
9088, 89syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 𝑅 = 𝐶)
9190oveq1d 6937 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑅𝐶) = (𝐶𝐶))
9289eleq1d 2844 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (𝑅 ∈ ℂ ↔ 𝐶 ∈ ℂ))
93 rlimcnp.r . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
9493ralrimiva 3148 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝐴 𝑅 ∈ ℂ)
95 rlimcnp.0 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ 𝐴)
9692, 94, 95rspcdva 3517 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℂ)
9796subidd 10722 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶𝐶) = 0)
9897ad2antrr 716 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝐶𝐶) = 0)
9991, 98eqtrd 2814 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑅𝐶) = 0)
10099abs00bd 14438 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (abs‘(𝑅𝐶)) = 0)
101 rpgt0 12151 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+ → 0 < 𝑧)
102101ad2antlr 717 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 0 < 𝑧)
103100, 102eqbrtrd 4908 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (abs‘(𝑅𝐶)) < 𝑧)
104103a1d 25 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))
105104ralrimiva 3148 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ+) → ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))
106105adantr 474 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))
107106biantrud 527 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ∧ ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))))
108 ralunb 4017 . . . . . . . . 9 (∀𝑥 ∈ ((𝐴 ∖ {0}) ∪ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ∧ ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
109107, 108syl6bbr 281 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑥 ∈ ((𝐴 ∖ {0}) ∪ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
110 undif1 4267 . . . . . . . . . 10 ((𝐴 ∖ {0}) ∪ {0}) = (𝐴 ∪ {0})
11195ad2antrr 716 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → 0 ∈ 𝐴)
112111snssd 4571 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → {0} ⊆ 𝐴)
113 ssequn2 4009 . . . . . . . . . . 11 ({0} ⊆ 𝐴 ↔ (𝐴 ∪ {0}) = 𝐴)
114112, 113sylib 210 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (𝐴 ∪ {0}) = 𝐴)
115110, 114syl5eq 2826 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → ((𝐴 ∖ {0}) ∪ {0}) = 𝐴)
116115raleqdv 3340 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ ((𝐴 ∖ {0}) ∪ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
11786, 109, 1163bitrd 297 . . . . . . 7 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
118117rexbidva 3234 . . . . . 6 ((𝜑𝑧 ∈ ℝ+) → (∃𝑟 ∈ ℝ+𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
11918, 118bitrd 271 . . . . 5 ((𝜑𝑧 ∈ ℝ+) → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
120119ralbidva 3167 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
121 nfv 1957 . . . . . . . . 9 𝑥(𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟
122 nffvmpt1 6457 . . . . . . . . . . 11 𝑥((𝑥𝐴𝑅)‘𝑤)
123 nfcv 2934 . . . . . . . . . . 11 𝑥(abs ∘ − )
124 nffvmpt1 6457 . . . . . . . . . . 11 𝑥((𝑥𝐴𝑅)‘0)
125122, 123, 124nfov 6952 . . . . . . . . . 10 𝑥(((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0))
126 nfcv 2934 . . . . . . . . . 10 𝑥 <
127 nfcv 2934 . . . . . . . . . 10 𝑥𝑧
128125, 126, 127nfbr 4933 . . . . . . . . 9 𝑥(((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧
129121, 128nfim 1943 . . . . . . . 8 𝑥((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧)
130 nfv 1957 . . . . . . . 8 𝑤((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧)
131 oveq1 6929 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0))
132131breq1d 4896 . . . . . . . . 9 (𝑤 = 𝑥 → ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 ↔ (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟))
133 fveq2 6446 . . . . . . . . . . 11 (𝑤 = 𝑥 → ((𝑥𝐴𝑅)‘𝑤) = ((𝑥𝐴𝑅)‘𝑥))
134133oveq1d 6937 . . . . . . . . . 10 (𝑤 = 𝑥 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) = (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)))
135134breq1d 4896 . . . . . . . . 9 (𝑤 = 𝑥 → ((((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧 ↔ (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))
136132, 135imbi12d 336 . . . . . . . 8 (𝑤 = 𝑥 → (((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧)))
137129, 130, 136cbvral 3363 . . . . . . 7 (∀𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑥𝐴 ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))
138 simpr 479 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥𝐴)
13995adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ∈ 𝐴)
140138, 139ovresd 7078 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (𝑥(abs ∘ − )0))
14154, 53syl6ss 3833 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
142 ax-resscn 10329 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
143141, 142syl6ss 3833 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℂ)
144143sselda 3821 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
145 0cnd 10369 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ∈ ℂ)
146 eqid 2778 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
147146cnmetdval 22982 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
148144, 145, 147syl2anc 579 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
149144subid1d 10723 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝑥 − 0) = 𝑥)
150149fveq2d 6450 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘(𝑥 − 0)) = (abs‘𝑥))
151140, 148, 1503eqtrd 2818 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (abs‘𝑥))
152141sselda 3821 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
15354sselda 3821 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥 ∈ (0[,)+∞))
154153, 62syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ 𝑥)
155152, 154absidd 14569 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘𝑥) = 𝑥)
156151, 155eqtrd 2814 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = 𝑥)
157156breq1d 4896 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟𝑥 < 𝑟))
158 eqid 2778 . . . . . . . . . . . . . 14 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
159158fvmpt2 6552 . . . . . . . . . . . . 13 ((𝑥𝐴𝑅 ∈ ℂ) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
160138, 93, 159syl2anc 579 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
16196adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
162158, 89, 139, 161fvmptd3 6564 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑥𝐴𝑅)‘0) = 𝐶)
163160, 162oveq12d 6940 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) = (𝑅(abs ∘ − )𝐶))
164146cnmetdval 22982 . . . . . . . . . . . 12 ((𝑅 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
16593, 161, 164syl2anc 579 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
166163, 165eqtrd 2814 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) = (abs‘(𝑅𝐶)))
167166breq1d 4896 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧 ↔ (abs‘(𝑅𝐶)) < 𝑧))
168157, 167imbi12d 336 . . . . . . . 8 ((𝜑𝑥𝐴) → (((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
169168ralbidva 3167 . . . . . . 7 (𝜑 → (∀𝑥𝐴 ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
170137, 169syl5bb 275 . . . . . 6 (𝜑 → (∀𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
171170rexbidv 3237 . . . . 5 (𝜑 → (∃𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
172171ralbidv 3168 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
17393fmpttd 6649 . . . . 5 (𝜑 → (𝑥𝐴𝑅):𝐴⟶ℂ)
174173biantrurd 528 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
175120, 172, 1743bitr2d 299 . . 3 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
17679eleq1d 2844 . . . . . . . 8 (𝑥 = (1 / 𝑦) → (𝑅 ∈ ℂ ↔ 𝑆 ∈ ℂ))
17794adantr 474 . . . . . . . 8 ((𝜑𝑦𝐵) → ∀𝑥𝐴 𝑅 ∈ ℂ)
178176, 177, 47rspcdva 3517 . . . . . . 7 ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
179178ralrimiva 3148 . . . . . 6 (𝜑 → ∀𝑦𝐵 𝑆 ∈ ℂ)
180 rpssre 12144 . . . . . . 7 + ⊆ ℝ
18120, 180syl6ss 3833 . . . . . 6 (𝜑𝐵 ⊆ ℝ)
182 1red 10377 . . . . . 6 (𝜑 → 1 ∈ ℝ)
183179, 181, 96, 182rlim3 14637 . . . . 5 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
184 0xr 10423 . . . . . . . . . 10 0 ∈ ℝ*
185 0lt1 10897 . . . . . . . . . 10 0 < 1
186 df-ioo 12491 . . . . . . . . . . 11 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
187 df-ico 12493 . . . . . . . . . . 11 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
188 xrltletr 12300 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤))
189186, 187, 188ixxss1 12505 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆ (0(,)+∞))
190184, 185, 189mp2an 682 . . . . . . . . 9 (1[,)+∞) ⊆ (0(,)+∞)
191 ioorp 12563 . . . . . . . . 9 (0(,)+∞) = ℝ+
192190, 191sseqtri 3856 . . . . . . . 8 (1[,)+∞) ⊆ ℝ+
193 ssrexv 3886 . . . . . . . 8 ((1[,)+∞) ⊆ ℝ+ → (∃𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
194192, 193ax-mp 5 . . . . . . 7 (∃𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧))
195 simplr 759 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑡 ∈ ℝ+)
196180, 195sseldi 3819 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑡 ∈ ℝ)
197181adantr 474 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ⊆ ℝ)
198197sselda 3821 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
199 ltle 10465 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑡 < 𝑦𝑡𝑦))
200196, 198, 199syl2anc 579 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → (𝑡 < 𝑦𝑡𝑦))
201200imim1d 82 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → ((𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
202201ralimdva 3144 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
203202reximdva 3198 . . . . . . 7 (𝜑 → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
204194, 203syl5 34 . . . . . 6 (𝜑 → (∃𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
205204ralimdv 3145 . . . . 5 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
206183, 205sylbid 232 . . . 4 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 → ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
207 ssrexv 3886 . . . . . . 7 (ℝ+ ⊆ ℝ → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
208180, 207ax-mp 5 . . . . . 6 (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧))
209208ralimi 3134 . . . . 5 (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧))
210179, 181, 96rlim2lt 14636 . . . . 5 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
211209, 210syl5ibr 238 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → (𝑦𝐵𝑆) ⇝𝑟 𝐶))
212206, 211impbid 204 . . 3 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
213 cnxmet 22984 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
214 xmetres2 22574 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
215213, 143, 214sylancr 581 . . . 4 (𝜑 → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
216213a1i 11 . . . 4 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
217 eqid 2778 . . . . 5 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
218 rlimcnp.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
219218cnfldtopn 22993 . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
220217, 219metcnp2 22755 . . . 4 ((((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ 𝐴) → ((𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
221215, 216, 95, 220syl3anc 1439 . . 3 (𝜑 → ((𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
222175, 212, 2213bitr4d 303 . 2 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0)))
223 rlimcnp.k . . . . . 6 𝐾 = (𝐽t 𝐴)
224 eqid 2778 . . . . . . . 8 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
225224, 219, 217metrest 22737 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
226213, 143, 225sylancr 581 . . . . . 6 (𝜑 → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
227223, 226syl5eq 2826 . . . . 5 (𝜑𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
228227oveq1d 6937 . . . 4 (𝜑 → (𝐾 CnP 𝐽) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽))
229228fveq1d 6448 . . 3 (𝜑 → ((𝐾 CnP 𝐽)‘0) = (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0))
230229eleq2d 2845 . 2 (𝜑 → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘0) ↔ (𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0)))
231222, 230bitr4d 274 1 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘0)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107   ≠ wne 2969  ∀wral 3090  ∃wrex 3091   ∖ cdif 3789   ∪ cun 3790   ⊆ wss 3792  {csn 4398   class class class wbr 4886   ↦ cmpt 4965   × cxp 5353   ↾ cres 5357   ∘ ccom 5359  ⟶wf 6131  ‘cfv 6135  (class class class)co 6922  ℂcc 10270  ℝcr 10271  0cc0 10272  1c1 10273  +∞cpnf 10408  ℝ*cxr 10410   < clt 10411   ≤ cle 10412   − cmin 10606   / cdiv 11032  ℝ+crp 12137  (,)cioo 12487  [,)cico 12489  abscabs 14381   ⇝𝑟 crli 14624   ↾t crest 16467  TopOpenctopn 16468  ∞Metcxmet 20127  MetOpencmopn 20132  ℂfldccnfld 20142   CnP ccnp 21437 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-fz 12644  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-rlim 14628  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-plusg 16351  df-mulr 16352  df-starv 16353  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-rest 16469  df-topn 16470  df-topgen 16490  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-bases 21158  df-cnp 21440 This theorem is referenced by:  rlimcnp2  25145
 Copyright terms: Public domain W3C validator