| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rpreccl 13062 | . . . . . . . . 9
⊢ (𝑟 ∈ ℝ+
→ (1 / 𝑟) ∈
ℝ+) | 
| 2 | 1 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → (1 /
𝑟) ∈
ℝ+) | 
| 3 |  | rpreccl 13062 | . . . . . . . . 9
⊢ (𝑡 ∈ ℝ+
→ (1 / 𝑡) ∈
ℝ+) | 
| 4 |  | rpcnne0 13054 | . . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ+
→ (𝑡 ∈ ℂ
∧ 𝑡 ≠
0)) | 
| 5 | 4 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) | 
| 6 |  | recrec 11965 | . . . . . . . . . . 11
⊢ ((𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → (1 / (1 / 𝑡)) = 𝑡) | 
| 7 | 5, 6 | syl 17 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (1 / (1 /
𝑡)) = 𝑡) | 
| 8 | 7 | eqcomd 2742 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝑡 = (1 / (1 / 𝑡))) | 
| 9 |  | oveq2 7440 | . . . . . . . . . 10
⊢ (𝑟 = (1 / 𝑡) → (1 / 𝑟) = (1 / (1 / 𝑡))) | 
| 10 | 9 | rspceeqv 3644 | . . . . . . . . 9
⊢ (((1 /
𝑡) ∈
ℝ+ ∧ 𝑡
= (1 / (1 / 𝑡))) →
∃𝑟 ∈
ℝ+ 𝑡 = (1
/ 𝑟)) | 
| 11 | 3, 8, 10 | syl2an2 686 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
∃𝑟 ∈
ℝ+ 𝑡 = (1
/ 𝑟)) | 
| 12 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 = (1 / 𝑟)) → 𝑡 = (1 / 𝑟)) | 
| 13 | 12 | breq1d 5152 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 = (1 / 𝑟)) → (𝑡 < 𝑦 ↔ (1 / 𝑟) < 𝑦)) | 
| 14 | 13 | imbi1d 341 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 = (1 / 𝑟)) → ((𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) ↔ ((1 / 𝑟) < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 15 | 14 | ralbidv 3177 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 = (1 / 𝑟)) → (∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) ↔ ∀𝑦 ∈ 𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 16 | 2, 11, 15 | rexxfrd 5408 | . . . . . . 7
⊢ (𝜑 → (∃𝑡 ∈ ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+ ∀𝑦 ∈ 𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 17 | 16 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ+) →
(∃𝑡 ∈
ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+ ∀𝑦 ∈ 𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 18 |  | simplr 768 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝐵) → 𝑟 ∈ ℝ+) | 
| 19 |  | rlimcnp.b | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ⊆
ℝ+) | 
| 20 | 19 | sselda 3982 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℝ+) | 
| 21 | 20 | adantlr 715 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℝ+) | 
| 22 |  | elrp 13037 | . . . . . . . . . . . . . 14
⊢ (𝑟 ∈ ℝ+
↔ (𝑟 ∈ ℝ
∧ 0 < 𝑟)) | 
| 23 |  | elrp 13037 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ+
↔ (𝑦 ∈ ℝ
∧ 0 < 𝑦)) | 
| 24 |  | ltrec1 12156 | . . . . . . . . . . . . . 14
⊢ (((𝑟 ∈ ℝ ∧ 0 <
𝑟) ∧ (𝑦 ∈ ℝ ∧ 0 <
𝑦)) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟)) | 
| 25 | 22, 23, 24 | syl2anb 598 | . . . . . . . . . . . . 13
⊢ ((𝑟 ∈ ℝ+
∧ 𝑦 ∈
ℝ+) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟)) | 
| 26 | 18, 21, 25 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝐵) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟)) | 
| 27 | 26 | imbi1d 341 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝐵) → (((1 / 𝑟) < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 28 | 27 | ralbidva 3175 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
(∀𝑦 ∈ 𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) ↔ ∀𝑦 ∈ 𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 29 | 28 | adantlr 715 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+)
→ (∀𝑦 ∈
𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) ↔ ∀𝑦 ∈ 𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 30 |  | rpcn 13046 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℂ) | 
| 31 |  | rpne0 13052 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ≠
0) | 
| 32 | 30, 31 | recrecd 12041 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ+
→ (1 / (1 / 𝑦)) =
𝑦) | 
| 33 | 20, 32 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (1 / (1 / 𝑦)) = 𝑦) | 
| 34 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | 
| 35 | 33, 34 | eqeltrd 2840 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (1 / (1 / 𝑦)) ∈ 𝐵) | 
| 36 |  | eleq1 2828 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = (1 / 𝑦) → (𝑥 ∈ 𝐴 ↔ (1 / 𝑦) ∈ 𝐴)) | 
| 37 |  | oveq2 7440 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = (1 / 𝑦) → (1 / 𝑥) = (1 / (1 / 𝑦))) | 
| 38 | 37 | eleq1d 2825 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = (1 / 𝑦) → ((1 / 𝑥) ∈ 𝐵 ↔ (1 / (1 / 𝑦)) ∈ 𝐵)) | 
| 39 | 36, 38 | bibi12d 345 | . . . . . . . . . . . . . 14
⊢ (𝑥 = (1 / 𝑦) → ((𝑥 ∈ 𝐴 ↔ (1 / 𝑥) ∈ 𝐵) ↔ ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑦)) ∈ 𝐵))) | 
| 40 |  | rlimcnp.d | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ 𝐴 ↔ (1 / 𝑥) ∈ 𝐵)) | 
| 41 | 40 | ralrimiva 3145 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (𝑥 ∈ 𝐴 ↔ (1 / 𝑥) ∈ 𝐵)) | 
| 42 | 41 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∀𝑥 ∈ ℝ+ (𝑥 ∈ 𝐴 ↔ (1 / 𝑥) ∈ 𝐵)) | 
| 43 | 20 | rpreccld 13088 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (1 / 𝑦) ∈
ℝ+) | 
| 44 | 39, 42, 43 | rspcdva 3622 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑦)) ∈ 𝐵)) | 
| 45 | 35, 44 | mpbird 257 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (1 / 𝑦) ∈ 𝐴) | 
| 46 | 43 | rpne0d 13083 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (1 / 𝑦) ≠ 0) | 
| 47 |  | eldifsn 4785 | . . . . . . . . . . . 12
⊢ ((1 /
𝑦) ∈ (𝐴 ∖ {0}) ↔ ((1 / 𝑦) ∈ 𝐴 ∧ (1 / 𝑦) ≠ 0)) | 
| 48 | 45, 46, 47 | sylanbrc 583 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (1 / 𝑦) ∈ (𝐴 ∖ {0})) | 
| 49 |  | eldifi 4130 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥 ∈ 𝐴) | 
| 50 | 49 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ 𝐴) | 
| 51 |  | rge0ssre 13497 | . . . . . . . . . . . . . . . 16
⊢
(0[,)+∞) ⊆ ℝ | 
| 52 |  | rlimcnp.a | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ⊆ (0[,)+∞)) | 
| 53 | 52 | ssdifssd 4146 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 ∖ {0}) ⊆
(0[,)+∞)) | 
| 54 | 53 | sselda 3982 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ (0[,)+∞)) | 
| 55 | 51, 54 | sselid 3980 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ ℝ) | 
| 56 |  | 0re 11264 | . . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ | 
| 57 |  | pnfxr 11316 | . . . . . . . . . . . . . . . . . . 19
⊢ +∞
∈ ℝ* | 
| 58 |  | elico2 13452 | . . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 0
≤ 𝑥 ∧ 𝑥 <
+∞))) | 
| 59 | 56, 57, 58 | mp2an 692 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (0[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 0
≤ 𝑥 ∧ 𝑥 <
+∞)) | 
| 60 | 59 | simp2bi 1146 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (0[,)+∞) → 0
≤ 𝑥) | 
| 61 | 54, 60 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {0})) → 0 ≤ 𝑥) | 
| 62 |  | eldifsni 4789 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥 ≠ 0) | 
| 63 | 62 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ≠ 0) | 
| 64 | 55, 61, 63 | ne0gt0d 11399 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {0})) → 0 < 𝑥) | 
| 65 | 55, 64 | elrpd 13075 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ ℝ+) | 
| 66 | 65, 40 | syldan 591 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {0})) → (𝑥 ∈ 𝐴 ↔ (1 / 𝑥) ∈ 𝐵)) | 
| 67 | 50, 66 | mpbid 232 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {0})) → (1 / 𝑥) ∈ 𝐵) | 
| 68 |  | rpcn 13046 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) | 
| 69 |  | rpne0 13052 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) | 
| 70 | 68, 69 | recrecd 12041 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ+
→ (1 / (1 / 𝑥)) =
𝑥) | 
| 71 | 65, 70 | syl 17 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {0})) → (1 / (1 / 𝑥)) = 𝑥) | 
| 72 | 71 | eqcomd 2742 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 = (1 / (1 / 𝑥))) | 
| 73 |  | oveq2 7440 | . . . . . . . . . . . . 13
⊢ (𝑦 = (1 / 𝑥) → (1 / 𝑦) = (1 / (1 / 𝑥))) | 
| 74 | 73 | rspceeqv 3644 | . . . . . . . . . . . 12
⊢ (((1 /
𝑥) ∈ 𝐵 ∧ 𝑥 = (1 / (1 / 𝑥))) → ∃𝑦 ∈ 𝐵 𝑥 = (1 / 𝑦)) | 
| 75 | 67, 72, 74 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {0})) → ∃𝑦 ∈ 𝐵 𝑥 = (1 / 𝑦)) | 
| 76 |  | breq1 5145 | . . . . . . . . . . . . 13
⊢ (𝑥 = (1 / 𝑦) → (𝑥 < 𝑟 ↔ (1 / 𝑦) < 𝑟)) | 
| 77 |  | rlimcnp.s | . . . . . . . . . . . . . . 15
⊢ (𝑥 = (1 / 𝑦) → 𝑅 = 𝑆) | 
| 78 | 77 | fvoveq1d 7454 | . . . . . . . . . . . . . 14
⊢ (𝑥 = (1 / 𝑦) → (abs‘(𝑅 − 𝐶)) = (abs‘(𝑆 − 𝐶))) | 
| 79 | 78 | breq1d 5152 | . . . . . . . . . . . . 13
⊢ (𝑥 = (1 / 𝑦) → ((abs‘(𝑅 − 𝐶)) < 𝑧 ↔ (abs‘(𝑆 − 𝐶)) < 𝑧)) | 
| 80 | 76, 79 | imbi12d 344 | . . . . . . . . . . . 12
⊢ (𝑥 = (1 / 𝑦) → ((𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 81 | 80 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = (1 / 𝑦)) → ((𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 82 | 48, 75, 81 | ralxfrd 5407 | . . . . . . . . . 10
⊢ (𝜑 → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧) ↔ ∀𝑦 ∈ 𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 83 | 82 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+)
→ (∀𝑥 ∈
(𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧) ↔ ∀𝑦 ∈ 𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 84 | 29, 83 | bitr4d 282 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+)
→ (∀𝑦 ∈
𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) ↔ ∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧))) | 
| 85 |  | elsni 4642 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ {0} → 𝑥 = 0) | 
| 86 | 85 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 𝑥 = 0) | 
| 87 |  | rlimcnp.c | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 0 → 𝑅 = 𝐶) | 
| 88 | 86, 87 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 𝑅 = 𝐶) | 
| 89 | 88 | oveq1d 7447 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑅 − 𝐶) = (𝐶 − 𝐶)) | 
| 90 | 87 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 0 → (𝑅 ∈ ℂ ↔ 𝐶 ∈ ℂ)) | 
| 91 |  | rlimcnp.r | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ ℂ) | 
| 92 | 91 | ralrimiva 3145 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ ℂ) | 
| 93 |  | rlimcnp.0 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 ∈ 𝐴) | 
| 94 | 90, 92, 93 | rspcdva 3622 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐶 ∈ ℂ) | 
| 95 | 94 | subidd 11609 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐶 − 𝐶) = 0) | 
| 96 | 95 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝐶 − 𝐶) = 0) | 
| 97 | 89, 96 | eqtrd 2776 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑅 − 𝐶) = 0) | 
| 98 | 97 | abs00bd 15331 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) →
(abs‘(𝑅 − 𝐶)) = 0) | 
| 99 |  | rpgt0 13048 | . . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ℝ+
→ 0 < 𝑧) | 
| 100 | 99 | ad2antlr 727 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 0 < 𝑧) | 
| 101 | 98, 100 | eqbrtrd 5164 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) →
(abs‘(𝑅 − 𝐶)) < 𝑧) | 
| 102 | 101 | a1d 25 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧)) | 
| 103 | 102 | ralrimiva 3145 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ+) →
∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧)) | 
| 104 | 103 | adantr 480 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+)
→ ∀𝑥 ∈ {0}
(𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧)) | 
| 105 | 104 | biantrud 531 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+)
→ (∀𝑥 ∈
(𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧) ↔ (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧) ∧ ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧)))) | 
| 106 |  | ralunb 4196 | . . . . . . . . 9
⊢
(∀𝑥 ∈
((𝐴 ∖ {0}) ∪
{0})(𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧) ↔ (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧) ∧ ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧))) | 
| 107 | 105, 106 | bitr4di 289 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+)
→ (∀𝑥 ∈
(𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧) ↔ ∀𝑥 ∈ ((𝐴 ∖ {0}) ∪ {0})(𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧))) | 
| 108 |  | undif1 4475 | . . . . . . . . . 10
⊢ ((𝐴 ∖ {0}) ∪ {0}) =
(𝐴 ∪
{0}) | 
| 109 | 93 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+)
→ 0 ∈ 𝐴) | 
| 110 | 109 | snssd 4808 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+)
→ {0} ⊆ 𝐴) | 
| 111 |  | ssequn2 4188 | . . . . . . . . . . 11
⊢ ({0}
⊆ 𝐴 ↔ (𝐴 ∪ {0}) = 𝐴) | 
| 112 | 110, 111 | sylib 218 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+)
→ (𝐴 ∪ {0}) =
𝐴) | 
| 113 | 108, 112 | eqtrid 2788 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+)
→ ((𝐴 ∖ {0})
∪ {0}) = 𝐴) | 
| 114 | 113 | raleqdv 3325 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+)
→ (∀𝑥 ∈
((𝐴 ∖ {0}) ∪
{0})(𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧) ↔ ∀𝑥 ∈ 𝐴 (𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧))) | 
| 115 | 84, 107, 114 | 3bitrd 305 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+)
→ (∀𝑦 ∈
𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) ↔ ∀𝑥 ∈ 𝐴 (𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧))) | 
| 116 | 115 | rexbidva 3176 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ+) →
(∃𝑟 ∈
ℝ+ ∀𝑦 ∈ 𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ 𝐴 (𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧))) | 
| 117 | 17, 116 | bitrd 279 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ+) →
(∃𝑡 ∈
ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ 𝐴 (𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧))) | 
| 118 | 117 | ralbidva 3175 | . . . 4
⊢ (𝜑 → (∀𝑧 ∈ ℝ+
∃𝑡 ∈
ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+ ∃𝑟 ∈ ℝ+
∀𝑥 ∈ 𝐴 (𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧))) | 
| 119 |  | nfv 1913 | . . . . . . . . 9
⊢
Ⅎ𝑥(𝑤((abs ∘ − ) ↾
(𝐴 × 𝐴))0) < 𝑟 | 
| 120 |  | nffvmpt1 6916 | . . . . . . . . . . 11
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤) | 
| 121 |  | nfcv 2904 | . . . . . . . . . . 11
⊢
Ⅎ𝑥(abs
∘ − ) | 
| 122 |  | nffvmpt1 6916 | . . . . . . . . . . 11
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝑅)‘0) | 
| 123 | 120, 121,
122 | nfov 7462 | . . . . . . . . . 10
⊢
Ⅎ𝑥(((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) | 
| 124 |  | nfcv 2904 | . . . . . . . . . 10
⊢
Ⅎ𝑥
< | 
| 125 |  | nfcv 2904 | . . . . . . . . . 10
⊢
Ⅎ𝑥𝑧 | 
| 126 | 123, 124,
125 | nfbr 5189 | . . . . . . . . 9
⊢
Ⅎ𝑥(((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧 | 
| 127 | 119, 126 | nfim 1895 | . . . . . . . 8
⊢
Ⅎ𝑥((𝑤((abs ∘ − ) ↾
(𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧) | 
| 128 |  | nfv 1913 | . . . . . . . 8
⊢
Ⅎ𝑤((𝑥((abs ∘ − ) ↾
(𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧) | 
| 129 |  | oveq1 7439 | . . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0)) | 
| 130 | 129 | breq1d 5152 | . . . . . . . . 9
⊢ (𝑤 = 𝑥 → ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 ↔ (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟)) | 
| 131 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤) = ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)) | 
| 132 | 131 | oveq1d 7447 | . . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) = (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0))) | 
| 133 | 132 | breq1d 5152 | . . . . . . . . 9
⊢ (𝑤 = 𝑥 → ((((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧 ↔ (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧)) | 
| 134 | 130, 133 | imbi12d 344 | . . . . . . . 8
⊢ (𝑤 = 𝑥 → (((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧) ↔ ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧))) | 
| 135 | 127, 128,
134 | cbvralw 3305 | . . . . . . 7
⊢
(∀𝑤 ∈
𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧) ↔ ∀𝑥 ∈ 𝐴 ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧)) | 
| 136 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | 
| 137 | 93 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ∈ 𝐴) | 
| 138 | 136, 137 | ovresd 7601 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (𝑥(abs ∘ − )0)) | 
| 139 | 52, 51 | sstrdi 3995 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ⊆ ℝ) | 
| 140 |  | ax-resscn 11213 | . . . . . . . . . . . . . . 15
⊢ ℝ
⊆ ℂ | 
| 141 | 139, 140 | sstrdi 3995 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ ℂ) | 
| 142 | 141 | sselda 3982 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℂ) | 
| 143 |  | 0cnd 11255 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ∈ ℂ) | 
| 144 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢ (abs
∘ − ) = (abs ∘ − ) | 
| 145 | 144 | cnmetdval 24792 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ 0 ∈
ℂ) → (𝑥(abs
∘ − )0) = (abs‘(𝑥 − 0))) | 
| 146 | 142, 143,
145 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0))) | 
| 147 | 142 | subid1d 11610 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 − 0) = 𝑥) | 
| 148 | 147 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(𝑥 − 0)) = (abs‘𝑥)) | 
| 149 | 138, 146,
148 | 3eqtrd 2780 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (abs‘𝑥)) | 
| 150 | 139 | sselda 3982 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) | 
| 151 | 52 | sselda 3982 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (0[,)+∞)) | 
| 152 | 151, 60 | syl 17 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝑥) | 
| 153 | 150, 152 | absidd 15462 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝑥) = 𝑥) | 
| 154 | 149, 153 | eqtrd 2776 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = 𝑥) | 
| 155 | 154 | breq1d 5152 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 ↔ 𝑥 < 𝑟)) | 
| 156 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑥 ∈ 𝐴 ↦ 𝑅) | 
| 157 | 156 | fvmpt2 7026 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑅 ∈ ℂ) → ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥) = 𝑅) | 
| 158 | 136, 91, 157 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥) = 𝑅) | 
| 159 | 94 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) | 
| 160 | 156, 87, 137, 159 | fvmptd3 7038 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑅)‘0) = 𝐶) | 
| 161 | 158, 160 | oveq12d 7450 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) = (𝑅(abs ∘ − )𝐶)) | 
| 162 | 144 | cnmetdval 24792 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅 − 𝐶))) | 
| 163 | 91, 159, 162 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅 − 𝐶))) | 
| 164 | 161, 163 | eqtrd 2776 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) = (abs‘(𝑅 − 𝐶))) | 
| 165 | 164 | breq1d 5152 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧 ↔ (abs‘(𝑅 − 𝐶)) < 𝑧)) | 
| 166 | 155, 165 | imbi12d 344 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧) ↔ (𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧))) | 
| 167 | 166 | ralbidva 3175 | . . . . . . 7
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧) ↔ ∀𝑥 ∈ 𝐴 (𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧))) | 
| 168 | 135, 167 | bitrid 283 | . . . . . 6
⊢ (𝜑 → (∀𝑤 ∈ 𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧) ↔ ∀𝑥 ∈ 𝐴 (𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧))) | 
| 169 | 168 | rexbidv 3178 | . . . . 5
⊢ (𝜑 → (∃𝑟 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ 𝐴 (𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧))) | 
| 170 | 169 | ralbidv 3177 | . . . 4
⊢ (𝜑 → (∀𝑧 ∈ ℝ+
∃𝑟 ∈
ℝ+ ∀𝑤 ∈ 𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+ ∃𝑟 ∈ ℝ+
∀𝑥 ∈ 𝐴 (𝑥 < 𝑟 → (abs‘(𝑅 − 𝐶)) < 𝑧))) | 
| 171 | 91 | fmpttd 7134 | . . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶ℂ) | 
| 172 | 171 | biantrurd 532 | . . . 4
⊢ (𝜑 → (∀𝑧 ∈ ℝ+
∃𝑟 ∈
ℝ+ ∀𝑤 ∈ 𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧) ↔ ((𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+
∃𝑟 ∈
ℝ+ ∀𝑤 ∈ 𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧)))) | 
| 173 | 118, 170,
172 | 3bitr2d 307 | . . 3
⊢ (𝜑 → (∀𝑧 ∈ ℝ+
∃𝑡 ∈
ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) ↔ ((𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+
∃𝑟 ∈
ℝ+ ∀𝑤 ∈ 𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧)))) | 
| 174 | 77 | eleq1d 2825 | . . . . . . . 8
⊢ (𝑥 = (1 / 𝑦) → (𝑅 ∈ ℂ ↔ 𝑆 ∈ ℂ)) | 
| 175 | 92 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 𝑅 ∈ ℂ) | 
| 176 | 174, 175,
45 | rspcdva 3622 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) | 
| 177 | 176 | ralrimiva 3145 | . . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 𝑆 ∈ ℂ) | 
| 178 |  | rpssre 13043 | . . . . . . 7
⊢
ℝ+ ⊆ ℝ | 
| 179 | 19, 178 | sstrdi 3995 | . . . . . 6
⊢ (𝜑 → 𝐵 ⊆ ℝ) | 
| 180 |  | 1red 11263 | . . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) | 
| 181 | 177, 179,
94, 180 | rlim3 15535 | . . . . 5
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+
∃𝑡 ∈
(1[,)+∞)∀𝑦
∈ 𝐵 (𝑡 ≤ 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 182 |  | 0xr 11309 | . . . . . . . . . 10
⊢ 0 ∈
ℝ* | 
| 183 |  | 0lt1 11786 | . . . . . . . . . 10
⊢ 0 <
1 | 
| 184 |  | df-ioo 13392 | . . . . . . . . . . 11
⊢ (,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | 
| 185 |  | df-ico 13394 | . . . . . . . . . . 11
⊢ [,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | 
| 186 |  | xrltletr 13200 | . . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)
→ ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤)) | 
| 187 | 184, 185,
186 | ixxss1 13406 | . . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆
(0(,)+∞)) | 
| 188 | 182, 183,
187 | mp2an 692 | . . . . . . . . 9
⊢
(1[,)+∞) ⊆ (0(,)+∞) | 
| 189 |  | ioorp 13466 | . . . . . . . . 9
⊢
(0(,)+∞) = ℝ+ | 
| 190 | 188, 189 | sseqtri 4031 | . . . . . . . 8
⊢
(1[,)+∞) ⊆ ℝ+ | 
| 191 |  | ssrexv 4052 | . . . . . . . 8
⊢
((1[,)+∞) ⊆ ℝ+ → (∃𝑡 ∈
(1[,)+∞)∀𝑦
∈ 𝐵 (𝑡 ≤ 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 ≤ 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 192 | 190, 191 | ax-mp 5 | . . . . . . 7
⊢
(∃𝑡 ∈
(1[,)+∞)∀𝑦
∈ 𝐵 (𝑡 ≤ 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 ≤ 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧)) | 
| 193 |  | simplr 768 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑦 ∈ 𝐵) → 𝑡 ∈ ℝ+) | 
| 194 | 178, 193 | sselid 3980 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑦 ∈ 𝐵) → 𝑡 ∈ ℝ) | 
| 195 | 179 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝐵 ⊆
ℝ) | 
| 196 | 195 | sselda 3982 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℝ) | 
| 197 |  | ltle 11350 | . . . . . . . . . . 11
⊢ ((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑡 < 𝑦 → 𝑡 ≤ 𝑦)) | 
| 198 | 194, 196,
197 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑦 ∈ 𝐵) → (𝑡 < 𝑦 → 𝑡 ≤ 𝑦)) | 
| 199 | 198 | imim1d 82 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑦 ∈ 𝐵) → ((𝑡 ≤ 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) → (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 200 | 199 | ralimdva 3166 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
(∀𝑦 ∈ 𝐵 (𝑡 ≤ 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) → ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 201 | 200 | reximdva 3167 | . . . . . . 7
⊢ (𝜑 → (∃𝑡 ∈ ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 ≤ 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 202 | 192, 201 | syl5 34 | . . . . . 6
⊢ (𝜑 → (∃𝑡 ∈ (1[,)+∞)∀𝑦 ∈ 𝐵 (𝑡 ≤ 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 203 | 202 | ralimdv 3168 | . . . . 5
⊢ (𝜑 → (∀𝑧 ∈ ℝ+
∃𝑡 ∈
(1[,)+∞)∀𝑦
∈ 𝐵 (𝑡 ≤ 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) → ∀𝑧 ∈ ℝ+ ∃𝑡 ∈ ℝ+
∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 204 | 181, 203 | sylbid 240 | . . . 4
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 → ∀𝑧 ∈ ℝ+
∃𝑡 ∈
ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 205 |  | ssrexv 4052 | . . . . . . 7
⊢
(ℝ+ ⊆ ℝ → (∃𝑡 ∈ ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 206 | 178, 205 | ax-mp 5 | . . . . . 6
⊢
(∃𝑡 ∈
ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧)) | 
| 207 | 206 | ralimi 3082 | . . . . 5
⊢
(∀𝑧 ∈
ℝ+ ∃𝑡 ∈ ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) → ∀𝑧 ∈ ℝ+ ∃𝑡 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧)) | 
| 208 | 177, 179,
94 | rlim2lt 15534 | . . . . 5
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+
∃𝑡 ∈ ℝ
∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 209 | 207, 208 | imbitrrid 246 | . . . 4
⊢ (𝜑 → (∀𝑧 ∈ ℝ+
∃𝑡 ∈
ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧) → (𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶)) | 
| 210 | 204, 209 | impbid 212 | . . 3
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+
∃𝑡 ∈
ℝ+ ∀𝑦 ∈ 𝐵 (𝑡 < 𝑦 → (abs‘(𝑆 − 𝐶)) < 𝑧))) | 
| 211 |  | cnxmet 24794 | . . . . 5
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) | 
| 212 |  | xmetres2 24372 | . . . . 5
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘
− ) ↾ (𝐴
× 𝐴)) ∈
(∞Met‘𝐴)) | 
| 213 | 211, 141,
212 | sylancr 587 | . . . 4
⊢ (𝜑 → ((abs ∘ − )
↾ (𝐴 × 𝐴)) ∈
(∞Met‘𝐴)) | 
| 214 | 211 | a1i 11 | . . . 4
⊢ (𝜑 → (abs ∘ − )
∈ (∞Met‘ℂ)) | 
| 215 |  | eqid 2736 | . . . . 5
⊢
(MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − )
↾ (𝐴 × 𝐴))) | 
| 216 |  | rlimcnp.j | . . . . . 6
⊢ 𝐽 =
(TopOpen‘ℂfld) | 
| 217 | 216 | cnfldtopn 24803 | . . . . 5
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) | 
| 218 | 215, 217 | metcnp2 24556 | . . . 4
⊢ ((((abs
∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴) ∧ (abs ∘ − )
∈ (∞Met‘ℂ) ∧ 0 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (((MetOpen‘((abs ∘
− ) ↾ (𝐴
× 𝐴))) CnP 𝐽)‘0) ↔ ((𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+
∃𝑟 ∈
ℝ+ ∀𝑤 ∈ 𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧)))) | 
| 219 | 213, 214,
93, 218 | syl3anc 1372 | . . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (((MetOpen‘((abs ∘
− ) ↾ (𝐴
× 𝐴))) CnP 𝐽)‘0) ↔ ((𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+
∃𝑟 ∈
ℝ+ ∀𝑤 ∈ 𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑤)(abs ∘ − )((𝑥 ∈ 𝐴 ↦ 𝑅)‘0)) < 𝑧)))) | 
| 220 | 173, 210,
219 | 3bitr4d 311 | . 2
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (((MetOpen‘((abs ∘
− ) ↾ (𝐴
× 𝐴))) CnP 𝐽)‘0))) | 
| 221 |  | rlimcnp.k | . . . . . 6
⊢ 𝐾 = (𝐽 ↾t 𝐴) | 
| 222 |  | eqid 2736 | . . . . . . . 8
⊢ ((abs
∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴)) | 
| 223 | 222, 217,
215 | metrest 24538 | . . . . . . 7
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽 ↾t 𝐴) = (MetOpen‘((abs ∘ − )
↾ (𝐴 × 𝐴)))) | 
| 224 | 211, 141,
223 | sylancr 587 | . . . . . 6
⊢ (𝜑 → (𝐽 ↾t 𝐴) = (MetOpen‘((abs ∘ − )
↾ (𝐴 × 𝐴)))) | 
| 225 | 221, 224 | eqtrid 2788 | . . . . 5
⊢ (𝜑 → 𝐾 = (MetOpen‘((abs ∘ − )
↾ (𝐴 × 𝐴)))) | 
| 226 | 225 | oveq1d 7447 | . . . 4
⊢ (𝜑 → (𝐾 CnP 𝐽) = ((MetOpen‘((abs ∘ − )
↾ (𝐴 × 𝐴))) CnP 𝐽)) | 
| 227 | 226 | fveq1d 6907 | . . 3
⊢ (𝜑 → ((𝐾 CnP 𝐽)‘0) = (((MetOpen‘((abs ∘
− ) ↾ (𝐴
× 𝐴))) CnP 𝐽)‘0)) | 
| 228 | 227 | eleq2d 2826 | . 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝑅) ∈ ((𝐾 CnP 𝐽)‘0) ↔ (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (((MetOpen‘((abs ∘
− ) ↾ (𝐴
× 𝐴))) CnP 𝐽)‘0))) | 
| 229 | 220, 228 | bitr4d 282 | 1
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ ((𝐾 CnP 𝐽)‘0))) |