Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrn3 Structured version   Visualization version   GIF version

Theorem swrdrn3 30629
Description: Express the range of a subword. Stronger version of swrdrn2 30628. (Contributed by Thierry Arnoux, 13-Dec-2023.)
Assertion
Ref Expression
swrdrn3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))

Proof of Theorem swrdrn3
Dummy variables 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑖 ∈ (0..^(𝑁𝑀)))
2 fzssz 12910 . . . . . . 7 (0...(♯‘𝑊)) ⊆ ℤ
3 simpl3 1189 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ (0...(♯‘𝑊)))
42, 3sseldi 3965 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ ℤ)
5 fzssz 12910 . . . . . . 7 (0...𝑁) ⊆ ℤ
6 simpl2 1188 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ (0...𝑁))
75, 6sseldi 3965 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ ℤ)
8 fzoaddel2 13094 . . . . . 6 ((𝑖 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
91, 4, 7, 8syl3anc 1367 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
10 simpr 487 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀..^𝑁))
11 simpl2 1188 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ (0...𝑁))
125, 11sseldi 3965 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ)
1312zcnd 12089 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℂ)
14 simpl3 1189 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑁 ∈ (0...(♯‘𝑊)))
152, 14sseldi 3965 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℤ)
1615zcnd 12089 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℂ)
1713, 16pncan3d 11000 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑀 + (𝑁𝑀)) = 𝑁)
1817oveq2d 7172 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑀..^(𝑀 + (𝑁𝑀))) = (𝑀..^𝑁))
1910, 18eleqtrrd 2916 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀..^(𝑀 + (𝑁𝑀))))
2015, 12zsubcld 12093 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑁𝑀) ∈ ℤ)
21 fzosubel3 13099 . . . . . . 7 ((𝑗 ∈ (𝑀..^(𝑀 + (𝑁𝑀))) ∧ (𝑁𝑀) ∈ ℤ) → (𝑗𝑀) ∈ (0..^(𝑁𝑀)))
2219, 20, 21syl2anc 586 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗𝑀) ∈ (0..^(𝑁𝑀)))
23 simpr 487 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑖 = (𝑗𝑀)) → 𝑖 = (𝑗𝑀))
2423oveq1d 7171 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑖 = (𝑗𝑀)) → (𝑖 + 𝑀) = ((𝑗𝑀) + 𝑀))
2524eqeq2d 2832 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑖 = (𝑗𝑀)) → (𝑗 = (𝑖 + 𝑀) ↔ 𝑗 = ((𝑗𝑀) + 𝑀)))
26 fzossz 13058 . . . . . . . . . 10 (𝑀..^𝑁) ⊆ ℤ
2726, 10sseldi 3965 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ)
2827zcnd 12089 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℂ)
2928, 13npcand 11001 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝑗𝑀) + 𝑀) = 𝑗)
3029eqcomd 2827 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 = ((𝑗𝑀) + 𝑀))
3122, 25, 30rspcedvd 3626 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → ∃𝑖 ∈ (0..^(𝑁𝑀))𝑗 = (𝑖 + 𝑀))
32 eqcom 2828 . . . . . 6 (𝑦 = (𝑊𝑗) ↔ (𝑊𝑗) = 𝑦)
33 simpr 487 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → 𝑗 = (𝑖 + 𝑀))
3433fveq2d 6674 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → (𝑊𝑗) = (𝑊‘(𝑖 + 𝑀)))
3534eqeq2d 2832 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → (𝑦 = (𝑊𝑗) ↔ 𝑦 = (𝑊‘(𝑖 + 𝑀))))
3632, 35syl5bbr 287 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → ((𝑊𝑗) = 𝑦𝑦 = (𝑊‘(𝑖 + 𝑀))))
379, 31, 36rexxfrd 5310 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (∃𝑗 ∈ (𝑀..^𝑁)(𝑊𝑗) = 𝑦 ↔ ∃𝑖 ∈ (0..^(𝑁𝑀))𝑦 = (𝑊‘(𝑖 + 𝑀))))
38 eqid 2821 . . . . 5 (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))) = (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀)))
39 fvex 6683 . . . . 5 (𝑊‘(𝑖 + 𝑀)) ∈ V
4038, 39elrnmpti 5832 . . . 4 (𝑦 ∈ ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))) ↔ ∃𝑖 ∈ (0..^(𝑁𝑀))𝑦 = (𝑊‘(𝑖 + 𝑀)))
4137, 40syl6bbr 291 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (∃𝑗 ∈ (𝑀..^𝑁)(𝑊𝑗) = 𝑦𝑦 ∈ ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀)))))
42 wrdf 13867 . . . . . 6 (𝑊 ∈ Word 𝑉𝑊:(0..^(♯‘𝑊))⟶𝑉)
43423ad2ant1 1129 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑊:(0..^(♯‘𝑊))⟶𝑉)
4443ffnd 6515 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑊 Fn (0..^(♯‘𝑊)))
45 elfzuz 12905 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ (ℤ‘0))
46453ad2ant2 1130 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑀 ∈ (ℤ‘0))
47 fzoss1 13065 . . . . . 6 (𝑀 ∈ (ℤ‘0) → (𝑀..^𝑁) ⊆ (0..^𝑁))
4846, 47syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑀..^𝑁) ⊆ (0..^𝑁))
49 elfzuz3 12906 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑁))
50493ad2ant3 1131 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ𝑁))
51 fzoss2 13066 . . . . . 6 ((♯‘𝑊) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
5250, 51syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
5348, 52sstrd 3977 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑀..^𝑁) ⊆ (0..^(♯‘𝑊)))
5444, 53fvelimabd 6738 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑦 ∈ (𝑊 “ (𝑀..^𝑁)) ↔ ∃𝑗 ∈ (𝑀..^𝑁)(𝑊𝑗) = 𝑦))
55 swrdval2 14008 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))))
5655rneqd 5808 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))))
5756eleq2d 2898 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑦 ∈ ran (𝑊 substr ⟨𝑀, 𝑁⟩) ↔ 𝑦 ∈ ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀)))))
5841, 54, 573bitr4rd 314 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑦 ∈ ran (𝑊 substr ⟨𝑀, 𝑁⟩) ↔ 𝑦 ∈ (𝑊 “ (𝑀..^𝑁))))
5958eqrdv 2819 1 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  wss 3936  cop 4573  cmpt 5146  ran crn 5556  cima 5558  wf 6351  cfv 6355  (class class class)co 7156  0cc0 10537   + caddc 10540  cmin 10870  cz 11982  cuz 12244  ...cfz 12893  ..^cfzo 13034  chash 13691  Word cword 13862   substr csubstr 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-substr 14003
This theorem is referenced by:  swrdrndisj  30631  cycpmco2rn  30767
  Copyright terms: Public domain W3C validator