Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrn3 Structured version   Visualization version   GIF version

Theorem swrdrn3 31809
Description: Express the range of a subword. Stronger version of swrdrn2 31808. (Contributed by Thierry Arnoux, 13-Dec-2023.)
Assertion
Ref Expression
swrdrn3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))

Proof of Theorem swrdrn3
Dummy variables 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑖 ∈ (0..^(𝑁𝑀)))
2 simpl3 1193 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ (0...(♯‘𝑊)))
32elfzelzd 13442 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ ℤ)
4 simpl2 1192 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ (0...𝑁))
54elfzelzd 13442 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ ℤ)
6 fzoaddel2 13628 . . . . . 6 ((𝑖 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
71, 3, 5, 6syl3anc 1371 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
8 simpr 485 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀..^𝑁))
9 simpl2 1192 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ (0...𝑁))
109elfzelzd 13442 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ)
1110zcnd 12608 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℂ)
12 simpl3 1193 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑁 ∈ (0...(♯‘𝑊)))
1312elfzelzd 13442 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℤ)
1413zcnd 12608 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℂ)
1511, 14pncan3d 11515 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑀 + (𝑁𝑀)) = 𝑁)
1615oveq2d 7373 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑀..^(𝑀 + (𝑁𝑀))) = (𝑀..^𝑁))
178, 16eleqtrrd 2841 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀..^(𝑀 + (𝑁𝑀))))
1813, 10zsubcld 12612 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑁𝑀) ∈ ℤ)
19 fzosubel3 13633 . . . . . . 7 ((𝑗 ∈ (𝑀..^(𝑀 + (𝑁𝑀))) ∧ (𝑁𝑀) ∈ ℤ) → (𝑗𝑀) ∈ (0..^(𝑁𝑀)))
2017, 18, 19syl2anc 584 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗𝑀) ∈ (0..^(𝑁𝑀)))
21 simpr 485 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑖 = (𝑗𝑀)) → 𝑖 = (𝑗𝑀))
2221oveq1d 7372 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑖 = (𝑗𝑀)) → (𝑖 + 𝑀) = ((𝑗𝑀) + 𝑀))
2322eqeq2d 2747 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑖 = (𝑗𝑀)) → (𝑗 = (𝑖 + 𝑀) ↔ 𝑗 = ((𝑗𝑀) + 𝑀)))
24 fzossz 13592 . . . . . . . . . 10 (𝑀..^𝑁) ⊆ ℤ
2524, 8sselid 3942 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ)
2625zcnd 12608 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℂ)
2726, 11npcand 11516 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝑗𝑀) + 𝑀) = 𝑗)
2827eqcomd 2742 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 = ((𝑗𝑀) + 𝑀))
2920, 23, 28rspcedvd 3583 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → ∃𝑖 ∈ (0..^(𝑁𝑀))𝑗 = (𝑖 + 𝑀))
30 eqcom 2743 . . . . . 6 (𝑦 = (𝑊𝑗) ↔ (𝑊𝑗) = 𝑦)
31 simpr 485 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → 𝑗 = (𝑖 + 𝑀))
3231fveq2d 6846 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → (𝑊𝑗) = (𝑊‘(𝑖 + 𝑀)))
3332eqeq2d 2747 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → (𝑦 = (𝑊𝑗) ↔ 𝑦 = (𝑊‘(𝑖 + 𝑀))))
3430, 33bitr3id 284 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → ((𝑊𝑗) = 𝑦𝑦 = (𝑊‘(𝑖 + 𝑀))))
357, 29, 34rexxfrd 5364 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (∃𝑗 ∈ (𝑀..^𝑁)(𝑊𝑗) = 𝑦 ↔ ∃𝑖 ∈ (0..^(𝑁𝑀))𝑦 = (𝑊‘(𝑖 + 𝑀))))
36 eqid 2736 . . . . 5 (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))) = (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀)))
37 fvex 6855 . . . . 5 (𝑊‘(𝑖 + 𝑀)) ∈ V
3836, 37elrnmpti 5915 . . . 4 (𝑦 ∈ ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))) ↔ ∃𝑖 ∈ (0..^(𝑁𝑀))𝑦 = (𝑊‘(𝑖 + 𝑀)))
3935, 38bitr4di 288 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (∃𝑗 ∈ (𝑀..^𝑁)(𝑊𝑗) = 𝑦𝑦 ∈ ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀)))))
40 wrdf 14407 . . . . . 6 (𝑊 ∈ Word 𝑉𝑊:(0..^(♯‘𝑊))⟶𝑉)
41403ad2ant1 1133 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑊:(0..^(♯‘𝑊))⟶𝑉)
4241ffnd 6669 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑊 Fn (0..^(♯‘𝑊)))
43 elfzuz 13437 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ (ℤ‘0))
44433ad2ant2 1134 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑀 ∈ (ℤ‘0))
45 fzoss1 13599 . . . . . 6 (𝑀 ∈ (ℤ‘0) → (𝑀..^𝑁) ⊆ (0..^𝑁))
4644, 45syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑀..^𝑁) ⊆ (0..^𝑁))
47 elfzuz3 13438 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑁))
48473ad2ant3 1135 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ𝑁))
49 fzoss2 13600 . . . . . 6 ((♯‘𝑊) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
5048, 49syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
5146, 50sstrd 3954 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑀..^𝑁) ⊆ (0..^(♯‘𝑊)))
5242, 51fvelimabd 6915 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑦 ∈ (𝑊 “ (𝑀..^𝑁)) ↔ ∃𝑗 ∈ (𝑀..^𝑁)(𝑊𝑗) = 𝑦))
53 swrdval2 14534 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))))
5453rneqd 5893 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))))
5554eleq2d 2823 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑦 ∈ ran (𝑊 substr ⟨𝑀, 𝑁⟩) ↔ 𝑦 ∈ ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀)))))
5639, 52, 553bitr4rd 311 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑦 ∈ ran (𝑊 substr ⟨𝑀, 𝑁⟩) ↔ 𝑦 ∈ (𝑊 “ (𝑀..^𝑁))))
5756eqrdv 2734 1 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  wss 3910  cop 4592  cmpt 5188  ran crn 5634  cima 5636  wf 6492  cfv 6496  (class class class)co 7357  0cc0 11051   + caddc 11054  cmin 11385  cz 12499  cuz 12763  ...cfz 13424  ..^cfzo 13567  chash 14230  Word cword 14402   substr csubstr 14528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-substr 14529
This theorem is referenced by:  swrdrndisj  31811  cycpmco2rn  31974
  Copyright terms: Public domain W3C validator