Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrn3 Structured version   Visualization version   GIF version

Theorem swrdrn3 31865
Description: Express the range of a subword. Stronger version of swrdrn2 31864. (Contributed by Thierry Arnoux, 13-Dec-2023.)
Assertion
Ref Expression
swrdrn3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))

Proof of Theorem swrdrn3
Dummy variables 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 486 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑖 ∈ (0..^(𝑁𝑀)))
2 simpl3 1194 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ (0...(♯‘𝑊)))
32elfzelzd 13451 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ ℤ)
4 simpl2 1193 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ (0...𝑁))
54elfzelzd 13451 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ ℤ)
6 fzoaddel2 13637 . . . . . 6 ((𝑖 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
71, 3, 5, 6syl3anc 1372 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
8 simpr 486 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀..^𝑁))
9 simpl2 1193 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ (0...𝑁))
109elfzelzd 13451 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ)
1110zcnd 12616 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℂ)
12 simpl3 1194 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑁 ∈ (0...(♯‘𝑊)))
1312elfzelzd 13451 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℤ)
1413zcnd 12616 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℂ)
1511, 14pncan3d 11523 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑀 + (𝑁𝑀)) = 𝑁)
1615oveq2d 7377 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑀..^(𝑀 + (𝑁𝑀))) = (𝑀..^𝑁))
178, 16eleqtrrd 2837 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀..^(𝑀 + (𝑁𝑀))))
1813, 10zsubcld 12620 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑁𝑀) ∈ ℤ)
19 fzosubel3 13642 . . . . . . 7 ((𝑗 ∈ (𝑀..^(𝑀 + (𝑁𝑀))) ∧ (𝑁𝑀) ∈ ℤ) → (𝑗𝑀) ∈ (0..^(𝑁𝑀)))
2017, 18, 19syl2anc 585 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗𝑀) ∈ (0..^(𝑁𝑀)))
21 simpr 486 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑖 = (𝑗𝑀)) → 𝑖 = (𝑗𝑀))
2221oveq1d 7376 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑖 = (𝑗𝑀)) → (𝑖 + 𝑀) = ((𝑗𝑀) + 𝑀))
2322eqeq2d 2744 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑖 = (𝑗𝑀)) → (𝑗 = (𝑖 + 𝑀) ↔ 𝑗 = ((𝑗𝑀) + 𝑀)))
24 fzossz 13601 . . . . . . . . . 10 (𝑀..^𝑁) ⊆ ℤ
2524, 8sselid 3946 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ)
2625zcnd 12616 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℂ)
2726, 11npcand 11524 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝑗𝑀) + 𝑀) = 𝑗)
2827eqcomd 2739 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 = ((𝑗𝑀) + 𝑀))
2920, 23, 28rspcedvd 3585 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → ∃𝑖 ∈ (0..^(𝑁𝑀))𝑗 = (𝑖 + 𝑀))
30 eqcom 2740 . . . . . 6 (𝑦 = (𝑊𝑗) ↔ (𝑊𝑗) = 𝑦)
31 simpr 486 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → 𝑗 = (𝑖 + 𝑀))
3231fveq2d 6850 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → (𝑊𝑗) = (𝑊‘(𝑖 + 𝑀)))
3332eqeq2d 2744 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → (𝑦 = (𝑊𝑗) ↔ 𝑦 = (𝑊‘(𝑖 + 𝑀))))
3430, 33bitr3id 285 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → ((𝑊𝑗) = 𝑦𝑦 = (𝑊‘(𝑖 + 𝑀))))
357, 29, 34rexxfrd 5368 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (∃𝑗 ∈ (𝑀..^𝑁)(𝑊𝑗) = 𝑦 ↔ ∃𝑖 ∈ (0..^(𝑁𝑀))𝑦 = (𝑊‘(𝑖 + 𝑀))))
36 eqid 2733 . . . . 5 (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))) = (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀)))
37 fvex 6859 . . . . 5 (𝑊‘(𝑖 + 𝑀)) ∈ V
3836, 37elrnmpti 5919 . . . 4 (𝑦 ∈ ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))) ↔ ∃𝑖 ∈ (0..^(𝑁𝑀))𝑦 = (𝑊‘(𝑖 + 𝑀)))
3935, 38bitr4di 289 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (∃𝑗 ∈ (𝑀..^𝑁)(𝑊𝑗) = 𝑦𝑦 ∈ ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀)))))
40 wrdf 14416 . . . . . 6 (𝑊 ∈ Word 𝑉𝑊:(0..^(♯‘𝑊))⟶𝑉)
41403ad2ant1 1134 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑊:(0..^(♯‘𝑊))⟶𝑉)
4241ffnd 6673 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑊 Fn (0..^(♯‘𝑊)))
43 elfzuz 13446 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ (ℤ‘0))
44433ad2ant2 1135 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑀 ∈ (ℤ‘0))
45 fzoss1 13608 . . . . . 6 (𝑀 ∈ (ℤ‘0) → (𝑀..^𝑁) ⊆ (0..^𝑁))
4644, 45syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑀..^𝑁) ⊆ (0..^𝑁))
47 elfzuz3 13447 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑁))
48473ad2ant3 1136 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ𝑁))
49 fzoss2 13609 . . . . . 6 ((♯‘𝑊) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
5048, 49syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
5146, 50sstrd 3958 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑀..^𝑁) ⊆ (0..^(♯‘𝑊)))
5242, 51fvelimabd 6919 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑦 ∈ (𝑊 “ (𝑀..^𝑁)) ↔ ∃𝑗 ∈ (𝑀..^𝑁)(𝑊𝑗) = 𝑦))
53 swrdval2 14543 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))))
5453rneqd 5897 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))))
5554eleq2d 2820 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑦 ∈ ran (𝑊 substr ⟨𝑀, 𝑁⟩) ↔ 𝑦 ∈ ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀)))))
5639, 52, 553bitr4rd 312 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑦 ∈ ran (𝑊 substr ⟨𝑀, 𝑁⟩) ↔ 𝑦 ∈ (𝑊 “ (𝑀..^𝑁))))
5756eqrdv 2731 1 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wrex 3070  wss 3914  cop 4596  cmpt 5192  ran crn 5638  cima 5640  wf 6496  cfv 6500  (class class class)co 7361  0cc0 11059   + caddc 11062  cmin 11393  cz 12507  cuz 12771  ...cfz 13433  ..^cfzo 13576  chash 14239  Word cword 14411   substr csubstr 14537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434  df-fzo 13577  df-hash 14240  df-word 14412  df-substr 14538
This theorem is referenced by:  swrdrndisj  31867  cycpmco2rn  32030
  Copyright terms: Public domain W3C validator