Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrn3 Structured version   Visualization version   GIF version

Theorem swrdrn3 32765
Description: Express the range of a subword. Stronger version of swrdrn2 32764. (Contributed by Thierry Arnoux, 13-Dec-2023.)
Assertion
Ref Expression
swrdrn3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))

Proof of Theorem swrdrn3
Dummy variables 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 483 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑖 ∈ (0..^(𝑁𝑀)))
2 simpl3 1190 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ (0...(♯‘𝑊)))
32elfzelzd 13537 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ ℤ)
4 simpl2 1189 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ (0...𝑁))
54elfzelzd 13537 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ ℤ)
6 fzoaddel2 13723 . . . . . 6 ((𝑖 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
71, 3, 5, 6syl3anc 1368 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
8 simpr 483 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀..^𝑁))
9 simpl2 1189 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ (0...𝑁))
109elfzelzd 13537 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ)
1110zcnd 12700 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℂ)
12 simpl3 1190 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑁 ∈ (0...(♯‘𝑊)))
1312elfzelzd 13537 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℤ)
1413zcnd 12700 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℂ)
1511, 14pncan3d 11606 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑀 + (𝑁𝑀)) = 𝑁)
1615oveq2d 7435 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑀..^(𝑀 + (𝑁𝑀))) = (𝑀..^𝑁))
178, 16eleqtrrd 2828 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀..^(𝑀 + (𝑁𝑀))))
1813, 10zsubcld 12704 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑁𝑀) ∈ ℤ)
19 fzosubel3 13728 . . . . . . 7 ((𝑗 ∈ (𝑀..^(𝑀 + (𝑁𝑀))) ∧ (𝑁𝑀) ∈ ℤ) → (𝑗𝑀) ∈ (0..^(𝑁𝑀)))
2017, 18, 19syl2anc 582 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗𝑀) ∈ (0..^(𝑁𝑀)))
21 simpr 483 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑖 = (𝑗𝑀)) → 𝑖 = (𝑗𝑀))
2221oveq1d 7434 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑖 = (𝑗𝑀)) → (𝑖 + 𝑀) = ((𝑗𝑀) + 𝑀))
2322eqeq2d 2736 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑖 = (𝑗𝑀)) → (𝑗 = (𝑖 + 𝑀) ↔ 𝑗 = ((𝑗𝑀) + 𝑀)))
24 fzossz 13687 . . . . . . . . . 10 (𝑀..^𝑁) ⊆ ℤ
2524, 8sselid 3974 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ)
2625zcnd 12700 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℂ)
2726, 11npcand 11607 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝑗𝑀) + 𝑀) = 𝑗)
2827eqcomd 2731 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 = ((𝑗𝑀) + 𝑀))
2920, 23, 28rspcedvd 3608 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (𝑀..^𝑁)) → ∃𝑖 ∈ (0..^(𝑁𝑀))𝑗 = (𝑖 + 𝑀))
30 eqcom 2732 . . . . . 6 (𝑦 = (𝑊𝑗) ↔ (𝑊𝑗) = 𝑦)
31 simpr 483 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → 𝑗 = (𝑖 + 𝑀))
3231fveq2d 6900 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → (𝑊𝑗) = (𝑊‘(𝑖 + 𝑀)))
3332eqeq2d 2736 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → (𝑦 = (𝑊𝑗) ↔ 𝑦 = (𝑊‘(𝑖 + 𝑀))))
3430, 33bitr3id 284 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 = (𝑖 + 𝑀)) → ((𝑊𝑗) = 𝑦𝑦 = (𝑊‘(𝑖 + 𝑀))))
357, 29, 34rexxfrd 5409 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (∃𝑗 ∈ (𝑀..^𝑁)(𝑊𝑗) = 𝑦 ↔ ∃𝑖 ∈ (0..^(𝑁𝑀))𝑦 = (𝑊‘(𝑖 + 𝑀))))
36 eqid 2725 . . . . 5 (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))) = (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀)))
37 fvex 6909 . . . . 5 (𝑊‘(𝑖 + 𝑀)) ∈ V
3836, 37elrnmpti 5962 . . . 4 (𝑦 ∈ ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))) ↔ ∃𝑖 ∈ (0..^(𝑁𝑀))𝑦 = (𝑊‘(𝑖 + 𝑀)))
3935, 38bitr4di 288 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (∃𝑗 ∈ (𝑀..^𝑁)(𝑊𝑗) = 𝑦𝑦 ∈ ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀)))))
40 wrdf 14505 . . . . . 6 (𝑊 ∈ Word 𝑉𝑊:(0..^(♯‘𝑊))⟶𝑉)
41403ad2ant1 1130 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑊:(0..^(♯‘𝑊))⟶𝑉)
4241ffnd 6724 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑊 Fn (0..^(♯‘𝑊)))
43 elfzuz 13532 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ (ℤ‘0))
44433ad2ant2 1131 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑀 ∈ (ℤ‘0))
45 fzoss1 13694 . . . . . 6 (𝑀 ∈ (ℤ‘0) → (𝑀..^𝑁) ⊆ (0..^𝑁))
4644, 45syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑀..^𝑁) ⊆ (0..^𝑁))
47 elfzuz3 13533 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑁))
48473ad2ant3 1132 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ𝑁))
49 fzoss2 13695 . . . . . 6 ((♯‘𝑊) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
5048, 49syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
5146, 50sstrd 3987 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑀..^𝑁) ⊆ (0..^(♯‘𝑊)))
5242, 51fvelimabd 6971 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑦 ∈ (𝑊 “ (𝑀..^𝑁)) ↔ ∃𝑗 ∈ (𝑀..^𝑁)(𝑊𝑗) = 𝑦))
53 swrdval2 14632 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))))
5453rneqd 5940 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀))))
5554eleq2d 2811 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑦 ∈ ran (𝑊 substr ⟨𝑀, 𝑁⟩) ↔ 𝑦 ∈ ran (𝑖 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑖 + 𝑀)))))
5639, 52, 553bitr4rd 311 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑦 ∈ ran (𝑊 substr ⟨𝑀, 𝑁⟩) ↔ 𝑦 ∈ (𝑊 “ (𝑀..^𝑁))))
5756eqrdv 2723 1 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wrex 3059  wss 3944  cop 4636  cmpt 5232  ran crn 5679  cima 5681  wf 6545  cfv 6549  (class class class)co 7419  0cc0 11140   + caddc 11143  cmin 11476  cz 12591  cuz 12855  ...cfz 13519  ..^cfzo 13662  chash 14325  Word cword 14500   substr csubstr 14626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663  df-hash 14326  df-word 14501  df-substr 14627
This theorem is referenced by:  swrdrndisj  32767  cycpmco2rn  32938
  Copyright terms: Public domain W3C validator