Step | Hyp | Ref
| Expression |
1 | | dvh4dimat.k |
. . . . 5
β’ (π β (πΎ β HL β§ π β π»)) |
2 | 1 | simpld 495 |
. . . 4
β’ (π β πΎ β HL) |
3 | | dvh4dimat.p |
. . . . 5
β’ (π β π β π΄) |
4 | | eqid 2732 |
. . . . . 6
β’
(AtomsβπΎ) =
(AtomsβπΎ) |
5 | | dvh4dimat.h |
. . . . . 6
β’ π» = (LHypβπΎ) |
6 | | dvh4dimat.u |
. . . . . 6
β’ π = ((DVecHβπΎ)βπ) |
7 | | eqid 2732 |
. . . . . 6
β’
((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) |
8 | | dvh4dimat.a |
. . . . . 6
β’ π΄ = (LSAtomsβπ) |
9 | 4, 5, 6, 7, 8 | dihlatat 40196 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π΄) β (β‘((DIsoHβπΎ)βπ)βπ) β (AtomsβπΎ)) |
10 | 1, 3, 9 | syl2anc 584 |
. . . 4
β’ (π β (β‘((DIsoHβπΎ)βπ)βπ) β (AtomsβπΎ)) |
11 | | dvh4dimat.q |
. . . . 5
β’ (π β π β π΄) |
12 | 4, 5, 6, 7, 8 | dihlatat 40196 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π΄) β (β‘((DIsoHβπΎ)βπ)βπ) β (AtomsβπΎ)) |
13 | 1, 11, 12 | syl2anc 584 |
. . . 4
β’ (π β (β‘((DIsoHβπΎ)βπ)βπ) β (AtomsβπΎ)) |
14 | | dvh4dimat.r |
. . . . 5
β’ (π β π
β π΄) |
15 | 4, 5, 6, 7, 8 | dihlatat 40196 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π
β π΄) β (β‘((DIsoHβπΎ)βπ)βπ
) β (AtomsβπΎ)) |
16 | 1, 14, 15 | syl2anc 584 |
. . . 4
β’ (π β (β‘((DIsoHβπΎ)βπ)βπ
) β (AtomsβπΎ)) |
17 | | eqid 2732 |
. . . . 5
β’
(joinβπΎ) =
(joinβπΎ) |
18 | | eqid 2732 |
. . . . 5
β’
(leβπΎ) =
(leβπΎ) |
19 | 17, 18, 4 | 3dim3 38328 |
. . . 4
β’ ((πΎ β HL β§ ((β‘((DIsoHβπΎ)βπ)βπ) β (AtomsβπΎ) β§ (β‘((DIsoHβπΎ)βπ)βπ) β (AtomsβπΎ) β§ (β‘((DIsoHβπΎ)βπ)βπ
) β (AtomsβπΎ))) β βπ β (AtomsβπΎ) Β¬ π(leβπΎ)(((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
))) |
20 | 2, 10, 13, 16, 19 | syl13anc 1372 |
. . 3
β’ (π β βπ β (AtomsβπΎ) Β¬ π(leβπΎ)(((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
))) |
21 | | dvh4dimat.s |
. . . . . . . . 9
β’ β =
(LSSumβπ) |
22 | 1 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (AtomsβπΎ)) β (πΎ β HL β§ π β π»)) |
23 | 5, 6, 7, 8 | dih1dimat 40189 |
. . . . . . . . . . . 12
β’ (((πΎ β HL β§ π β π») β§ π β π΄) β π β ran ((DIsoHβπΎ)βπ)) |
24 | 1, 3, 23 | syl2anc 584 |
. . . . . . . . . . 11
β’ (π β π β ran ((DIsoHβπΎ)βπ)) |
25 | 5, 7, 6, 21, 8, 1,
24, 11 | dihsmatrn 40295 |
. . . . . . . . . 10
β’ (π β (π β π) β ran ((DIsoHβπΎ)βπ)) |
26 | 25 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (AtomsβπΎ)) β (π β π) β ran ((DIsoHβπΎ)βπ)) |
27 | 14 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (AtomsβπΎ)) β π
β π΄) |
28 | 17, 5, 7, 6, 21, 8,
22, 26, 27 | dihjat4 40292 |
. . . . . . . 8
β’ ((π β§ π β (AtomsβπΎ)) β ((π β π) β π
) = (((DIsoHβπΎ)βπ)β((β‘((DIsoHβπΎ)βπ)β(π β π))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
)))) |
29 | 24 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π β (AtomsβπΎ)) β π β ran ((DIsoHβπΎ)βπ)) |
30 | 11 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π β (AtomsβπΎ)) β π β π΄) |
31 | 17, 5, 7, 6, 21, 8,
22, 29, 30 | dihjat6 40293 |
. . . . . . . . 9
β’ ((π β§ π β (AtomsβπΎ)) β (β‘((DIsoHβπΎ)βπ)β(π β π)) = ((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))) |
32 | 31 | fvoveq1d 7427 |
. . . . . . . 8
β’ ((π β§ π β (AtomsβπΎ)) β (((DIsoHβπΎ)βπ)β((β‘((DIsoHβπΎ)βπ)β(π β π))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
))) = (((DIsoHβπΎ)βπ)β(((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
)))) |
33 | 28, 32 | eqtrd 2772 |
. . . . . . 7
β’ ((π β§ π β (AtomsβπΎ)) β ((π β π) β π
) = (((DIsoHβπΎ)βπ)β(((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
)))) |
34 | 33 | sseq2d 4013 |
. . . . . 6
β’ ((π β§ π β (AtomsβπΎ)) β ((((DIsoHβπΎ)βπ)βπ) β ((π β π) β π
) β (((DIsoHβπΎ)βπ)βπ) β (((DIsoHβπΎ)βπ)β(((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
))))) |
35 | | eqid 2732 |
. . . . . . . . 9
β’
(BaseβπΎ) =
(BaseβπΎ) |
36 | 35, 4 | atbase 38147 |
. . . . . . . 8
β’ (π β (AtomsβπΎ) β π β (BaseβπΎ)) |
37 | 36 | adantl 482 |
. . . . . . 7
β’ ((π β§ π β (AtomsβπΎ)) β π β (BaseβπΎ)) |
38 | 2 | hllatd 38222 |
. . . . . . . . 9
β’ (π β πΎ β Lat) |
39 | 35, 17, 4 | hlatjcl 38225 |
. . . . . . . . . 10
β’ ((πΎ β HL β§ (β‘((DIsoHβπΎ)βπ)βπ) β (AtomsβπΎ) β§ (β‘((DIsoHβπΎ)βπ)βπ) β (AtomsβπΎ)) β ((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ)) β (BaseβπΎ)) |
40 | 2, 10, 13, 39 | syl3anc 1371 |
. . . . . . . . 9
β’ (π β ((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ)) β (BaseβπΎ)) |
41 | 35, 4 | atbase 38147 |
. . . . . . . . . 10
β’ ((β‘((DIsoHβπΎ)βπ)βπ
) β (AtomsβπΎ) β (β‘((DIsoHβπΎ)βπ)βπ
) β (BaseβπΎ)) |
42 | 16, 41 | syl 17 |
. . . . . . . . 9
β’ (π β (β‘((DIsoHβπΎ)βπ)βπ
) β (BaseβπΎ)) |
43 | 35, 17 | latjcl 18388 |
. . . . . . . . 9
β’ ((πΎ β Lat β§ ((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ)) β (BaseβπΎ) β§ (β‘((DIsoHβπΎ)βπ)βπ
) β (BaseβπΎ)) β (((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
)) β (BaseβπΎ)) |
44 | 38, 40, 42, 43 | syl3anc 1371 |
. . . . . . . 8
β’ (π β (((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
)) β (BaseβπΎ)) |
45 | 44 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (AtomsβπΎ)) β (((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
)) β (BaseβπΎ)) |
46 | 35, 18, 5, 7 | dihord 40123 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ π β (BaseβπΎ) β§ (((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
)) β (BaseβπΎ)) β ((((DIsoHβπΎ)βπ)βπ) β (((DIsoHβπΎ)βπ)β(((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
))) β π(leβπΎ)(((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
)))) |
47 | 22, 37, 45, 46 | syl3anc 1371 |
. . . . . 6
β’ ((π β§ π β (AtomsβπΎ)) β ((((DIsoHβπΎ)βπ)βπ) β (((DIsoHβπΎ)βπ)β(((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
))) β π(leβπΎ)(((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
)))) |
48 | 34, 47 | bitr2d 279 |
. . . . 5
β’ ((π β§ π β (AtomsβπΎ)) β (π(leβπΎ)(((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
)) β (((DIsoHβπΎ)βπ)βπ) β ((π β π) β π
))) |
49 | 48 | notbid 317 |
. . . 4
β’ ((π β§ π β (AtomsβπΎ)) β (Β¬ π(leβπΎ)(((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
)) β Β¬ (((DIsoHβπΎ)βπ)βπ) β ((π β π) β π
))) |
50 | 49 | rexbidva 3176 |
. . 3
β’ (π β (βπ β (AtomsβπΎ) Β¬ π(leβπΎ)(((β‘((DIsoHβπΎ)βπ)βπ)(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ))(joinβπΎ)(β‘((DIsoHβπΎ)βπ)βπ
)) β βπ β (AtomsβπΎ) Β¬ (((DIsoHβπΎ)βπ)βπ) β ((π β π) β π
))) |
51 | 20, 50 | mpbid 231 |
. 2
β’ (π β βπ β (AtomsβπΎ) Β¬ (((DIsoHβπΎ)βπ)βπ) β ((π β π) β π
)) |
52 | 4, 5, 6, 7, 8 | dihatlat 40193 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β (AtomsβπΎ)) β (((DIsoHβπΎ)βπ)βπ) β π΄) |
53 | 1, 52 | sylan 580 |
. . 3
β’ ((π β§ π β (AtomsβπΎ)) β (((DIsoHβπΎ)βπ)βπ) β π΄) |
54 | 4, 5, 6, 7, 8 | dihlatat 40196 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π΄) β (β‘((DIsoHβπΎ)βπ)βπ ) β (AtomsβπΎ)) |
55 | 1, 54 | sylan 580 |
. . . 4
β’ ((π β§ π β π΄) β (β‘((DIsoHβπΎ)βπ)βπ ) β (AtomsβπΎ)) |
56 | 1 | adantr 481 |
. . . . . 6
β’ ((π β§ π β π΄) β (πΎ β HL β§ π β π»)) |
57 | 5, 6, 7, 8 | dih1dimat 40189 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ π β π΄) β π β ran ((DIsoHβπΎ)βπ)) |
58 | 1, 57 | sylan 580 |
. . . . . 6
β’ ((π β§ π β π΄) β π β ran ((DIsoHβπΎ)βπ)) |
59 | 5, 7 | dihcnvid2 40132 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ π β ran ((DIsoHβπΎ)βπ)) β (((DIsoHβπΎ)βπ)β(β‘((DIsoHβπΎ)βπ)βπ )) = π ) |
60 | 56, 58, 59 | syl2anc 584 |
. . . . 5
β’ ((π β§ π β π΄) β (((DIsoHβπΎ)βπ)β(β‘((DIsoHβπΎ)βπ)βπ )) = π ) |
61 | 60 | eqcomd 2738 |
. . . 4
β’ ((π β§ π β π΄) β π = (((DIsoHβπΎ)βπ)β(β‘((DIsoHβπΎ)βπ)βπ ))) |
62 | | fveq2 6888 |
. . . . 5
β’ (π = (β‘((DIsoHβπΎ)βπ)βπ ) β (((DIsoHβπΎ)βπ)βπ) = (((DIsoHβπΎ)βπ)β(β‘((DIsoHβπΎ)βπ)βπ ))) |
63 | 62 | rspceeqv 3632 |
. . . 4
β’ (((β‘((DIsoHβπΎ)βπ)βπ ) β (AtomsβπΎ) β§ π = (((DIsoHβπΎ)βπ)β(β‘((DIsoHβπΎ)βπ)βπ ))) β βπ β (AtomsβπΎ)π = (((DIsoHβπΎ)βπ)βπ)) |
64 | 55, 61, 63 | syl2anc 584 |
. . 3
β’ ((π β§ π β π΄) β βπ β (AtomsβπΎ)π = (((DIsoHβπΎ)βπ)βπ)) |
65 | | sseq1 4006 |
. . . . 5
β’ (π = (((DIsoHβπΎ)βπ)βπ) β (π β ((π β π) β π
) β (((DIsoHβπΎ)βπ)βπ) β ((π β π) β π
))) |
66 | 65 | notbid 317 |
. . . 4
β’ (π = (((DIsoHβπΎ)βπ)βπ) β (Β¬ π β ((π β π) β π
) β Β¬ (((DIsoHβπΎ)βπ)βπ) β ((π β π) β π
))) |
67 | 66 | adantl 482 |
. . 3
β’ ((π β§ π = (((DIsoHβπΎ)βπ)βπ)) β (Β¬ π β ((π β π) β π
) β Β¬ (((DIsoHβπΎ)βπ)βπ) β ((π β π) β π
))) |
68 | 53, 64, 67 | rexxfrd 5406 |
. 2
β’ (π β (βπ β π΄ Β¬ π β ((π β π) β π
) β βπ β (AtomsβπΎ) Β¬ (((DIsoHβπΎ)βπ)βπ) β ((π β π) β π
))) |
69 | 51, 68 | mpbird 256 |
1
β’ (π β βπ β π΄ Β¬ π β ((π β π) β π
)) |