| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | frn 6743 | . . 3
⊢ (𝐹:𝐼⟶𝒫 𝐵 → ran 𝐹 ⊆ 𝒫 𝐵) | 
| 2 |  | elrfi 42705 | . . 3
⊢ ((𝐵 ∈ 𝑉 ∧ ran 𝐹 ⊆ 𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑤))) | 
| 3 | 1, 2 | sylan2 593 | . 2
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑤))) | 
| 4 |  | imassrn 6089 | . . . . . 6
⊢ (𝐹 “ 𝑣) ⊆ ran 𝐹 | 
| 5 |  | pwexg 5378 | . . . . . . . 8
⊢ (𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V) | 
| 6 |  | ssexg 5323 | . . . . . . . 8
⊢ ((ran
𝐹 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V) → ran 𝐹 ∈ V) | 
| 7 | 1, 5, 6 | syl2anr 597 | . . . . . . 7
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) → ran 𝐹 ∈ V) | 
| 8 |  | elpw2g 5333 | . . . . . . 7
⊢ (ran
𝐹 ∈ V → ((𝐹 “ 𝑣) ∈ 𝒫 ran 𝐹 ↔ (𝐹 “ 𝑣) ⊆ ran 𝐹)) | 
| 9 | 7, 8 | syl 17 | . . . . . 6
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) → ((𝐹 “ 𝑣) ∈ 𝒫 ran 𝐹 ↔ (𝐹 “ 𝑣) ⊆ ran 𝐹)) | 
| 10 | 4, 9 | mpbiri 258 | . . . . 5
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) → (𝐹 “ 𝑣) ∈ 𝒫 ran 𝐹) | 
| 11 | 10 | adantr 480 | . . . 4
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹 “ 𝑣) ∈ 𝒫 ran 𝐹) | 
| 12 |  | ffun 6739 | . . . . . 6
⊢ (𝐹:𝐼⟶𝒫 𝐵 → Fun 𝐹) | 
| 13 | 12 | ad2antlr 727 | . . . . 5
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → Fun 𝐹) | 
| 14 |  | inss2 4238 | . . . . . . 7
⊢
(𝒫 𝐼 ∩
Fin) ⊆ Fin | 
| 15 | 14 | sseli 3979 | . . . . . 6
⊢ (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣 ∈ Fin) | 
| 16 | 15 | adantl 481 | . . . . 5
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝑣 ∈ Fin) | 
| 17 |  | imafi 9353 | . . . . 5
⊢ ((Fun
𝐹 ∧ 𝑣 ∈ Fin) → (𝐹 “ 𝑣) ∈ Fin) | 
| 18 | 13, 16, 17 | syl2anc 584 | . . . 4
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹 “ 𝑣) ∈ Fin) | 
| 19 | 11, 18 | elind 4200 | . . 3
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹 “ 𝑣) ∈ (𝒫 ran 𝐹 ∩ Fin)) | 
| 20 |  | ffn 6736 | . . . . . 6
⊢ (𝐹:𝐼⟶𝒫 𝐵 → 𝐹 Fn 𝐼) | 
| 21 | 20 | ad2antlr 727 | . . . . 5
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → 𝐹 Fn 𝐼) | 
| 22 |  | inss1 4237 | . . . . . . . 8
⊢
(𝒫 ran 𝐹
∩ Fin) ⊆ 𝒫 ran 𝐹 | 
| 23 | 22 | sseli 3979 | . . . . . . 7
⊢ (𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin) → 𝑤 ∈ 𝒫 ran 𝐹) | 
| 24 | 23 | elpwid 4609 | . . . . . 6
⊢ (𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin) → 𝑤 ⊆ ran 𝐹) | 
| 25 | 24 | adantl 481 | . . . . 5
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → 𝑤 ⊆ ran 𝐹) | 
| 26 |  | inss2 4238 | . . . . . . 7
⊢
(𝒫 ran 𝐹
∩ Fin) ⊆ Fin | 
| 27 | 26 | sseli 3979 | . . . . . 6
⊢ (𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin) → 𝑤 ∈ Fin) | 
| 28 | 27 | adantl 481 | . . . . 5
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → 𝑤 ∈ Fin) | 
| 29 |  | fipreima 9398 | . . . . 5
⊢ ((𝐹 Fn 𝐼 ∧ 𝑤 ⊆ ran 𝐹 ∧ 𝑤 ∈ Fin) → ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)(𝐹 “ 𝑣) = 𝑤) | 
| 30 | 21, 25, 28, 29 | syl3anc 1373 | . . . 4
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)(𝐹 “ 𝑣) = 𝑤) | 
| 31 |  | eqcom 2744 | . . . . 5
⊢ ((𝐹 “ 𝑣) = 𝑤 ↔ 𝑤 = (𝐹 “ 𝑣)) | 
| 32 | 31 | rexbii 3094 | . . . 4
⊢
(∃𝑣 ∈
(𝒫 𝐼 ∩
Fin)(𝐹 “ 𝑣) = 𝑤 ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝑤 = (𝐹 “ 𝑣)) | 
| 33 | 30, 32 | sylib 218 | . . 3
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝑤 = (𝐹 “ 𝑣)) | 
| 34 |  | inteq 4949 | . . . . . 6
⊢ (𝑤 = (𝐹 “ 𝑣) → ∩ 𝑤 = ∩
(𝐹 “ 𝑣)) | 
| 35 | 34 | ineq2d 4220 | . . . . 5
⊢ (𝑤 = (𝐹 “ 𝑣) → (𝐵 ∩ ∩ 𝑤) = (𝐵 ∩ ∩ (𝐹 “ 𝑣))) | 
| 36 | 35 | eqeq2d 2748 | . . . 4
⊢ (𝑤 = (𝐹 “ 𝑣) → (𝐴 = (𝐵 ∩ ∩ 𝑤) ↔ 𝐴 = (𝐵 ∩ ∩ (𝐹 “ 𝑣)))) | 
| 37 | 36 | adantl 481 | . . 3
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 = (𝐹 “ 𝑣)) → (𝐴 = (𝐵 ∩ ∩ 𝑤) ↔ 𝐴 = (𝐵 ∩ ∩ (𝐹 “ 𝑣)))) | 
| 38 | 19, 33, 37 | rexxfrd 5409 | . 2
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) → (∃𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑤) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 ∩ ∩ (𝐹 “ 𝑣)))) | 
| 39 | 20 | ad2antlr 727 | . . . . . . 7
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝐹 Fn 𝐼) | 
| 40 |  | inss1 4237 | . . . . . . . . . 10
⊢
(𝒫 𝐼 ∩
Fin) ⊆ 𝒫 𝐼 | 
| 41 | 40 | sseli 3979 | . . . . . . . . 9
⊢ (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣 ∈ 𝒫 𝐼) | 
| 42 | 41 | elpwid 4609 | . . . . . . . 8
⊢ (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣 ⊆ 𝐼) | 
| 43 | 42 | adantl 481 | . . . . . . 7
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝑣 ⊆ 𝐼) | 
| 44 |  | imaiinfv 42704 | . . . . . . 7
⊢ ((𝐹 Fn 𝐼 ∧ 𝑣 ⊆ 𝐼) → ∩
𝑦 ∈ 𝑣 (𝐹‘𝑦) = ∩ (𝐹 “ 𝑣)) | 
| 45 | 39, 43, 44 | syl2anc 584 | . . . . . 6
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → ∩ 𝑦 ∈ 𝑣 (𝐹‘𝑦) = ∩ (𝐹 “ 𝑣)) | 
| 46 | 45 | eqcomd 2743 | . . . . 5
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → ∩ (𝐹
“ 𝑣) = ∩ 𝑦 ∈ 𝑣 (𝐹‘𝑦)) | 
| 47 | 46 | ineq2d 4220 | . . . 4
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐵 ∩ ∩ (𝐹 “ 𝑣)) = (𝐵 ∩ ∩
𝑦 ∈ 𝑣 (𝐹‘𝑦))) | 
| 48 | 47 | eqeq2d 2748 | . . 3
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐴 = (𝐵 ∩ ∩ (𝐹 “ 𝑣)) ↔ 𝐴 = (𝐵 ∩ ∩
𝑦 ∈ 𝑣 (𝐹‘𝑦)))) | 
| 49 | 48 | rexbidva 3177 | . 2
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) → (∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 ∩ ∩ (𝐹 “ 𝑣)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 ∩ ∩
𝑦 ∈ 𝑣 (𝐹‘𝑦)))) | 
| 50 | 3, 38, 49 | 3bitrd 305 | 1
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 ∩ ∩
𝑦 ∈ 𝑣 (𝐹‘𝑦)))) |