Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfirn Structured version   Visualization version   GIF version

Theorem elrfirn 39312
Description: Elementhood in a set of relative finite intersections of an indexed family of sets. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfirn ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 (𝐹𝑦))))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵   𝑣,𝐹,𝑦   𝑣,𝐼   𝑣,𝑉   𝑦,𝑣
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐼(𝑦)   𝑉(𝑦)

Proof of Theorem elrfirn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 frn 6520 . . 3 (𝐹:𝐼⟶𝒫 𝐵 → ran 𝐹 ⊆ 𝒫 𝐵)
2 elrfi 39311 . . 3 ((𝐵𝑉 ∧ ran 𝐹 ⊆ 𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)𝐴 = (𝐵 𝑤)))
31, 2sylan2 594 . 2 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)𝐴 = (𝐵 𝑤)))
4 imassrn 5940 . . . . . 6 (𝐹𝑣) ⊆ ran 𝐹
5 pwexg 5279 . . . . . . . 8 (𝐵𝑉 → 𝒫 𝐵 ∈ V)
6 ssexg 5227 . . . . . . . 8 ((ran 𝐹 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V) → ran 𝐹 ∈ V)
71, 5, 6syl2anr 598 . . . . . . 7 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → ran 𝐹 ∈ V)
8 elpw2g 5247 . . . . . . 7 (ran 𝐹 ∈ V → ((𝐹𝑣) ∈ 𝒫 ran 𝐹 ↔ (𝐹𝑣) ⊆ ran 𝐹))
97, 8syl 17 . . . . . 6 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → ((𝐹𝑣) ∈ 𝒫 ran 𝐹 ↔ (𝐹𝑣) ⊆ ran 𝐹))
104, 9mpbiri 260 . . . . 5 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (𝐹𝑣) ∈ 𝒫 ran 𝐹)
1110adantr 483 . . . 4 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹𝑣) ∈ 𝒫 ran 𝐹)
12 ffun 6517 . . . . . 6 (𝐹:𝐼⟶𝒫 𝐵 → Fun 𝐹)
1312ad2antlr 725 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → Fun 𝐹)
14 inss2 4206 . . . . . . 7 (𝒫 𝐼 ∩ Fin) ⊆ Fin
1514sseli 3963 . . . . . 6 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣 ∈ Fin)
1615adantl 484 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝑣 ∈ Fin)
17 imafi 8817 . . . . 5 ((Fun 𝐹𝑣 ∈ Fin) → (𝐹𝑣) ∈ Fin)
1813, 16, 17syl2anc 586 . . . 4 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹𝑣) ∈ Fin)
1911, 18elind 4171 . . 3 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹𝑣) ∈ (𝒫 ran 𝐹 ∩ Fin))
20 ffn 6514 . . . . . 6 (𝐹:𝐼⟶𝒫 𝐵𝐹 Fn 𝐼)
2120ad2antlr 725 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → 𝐹 Fn 𝐼)
22 inss1 4205 . . . . . . . 8 (𝒫 ran 𝐹 ∩ Fin) ⊆ 𝒫 ran 𝐹
2322sseli 3963 . . . . . . 7 (𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin) → 𝑤 ∈ 𝒫 ran 𝐹)
2423elpwid 4550 . . . . . 6 (𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin) → 𝑤 ⊆ ran 𝐹)
2524adantl 484 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → 𝑤 ⊆ ran 𝐹)
26 inss2 4206 . . . . . . 7 (𝒫 ran 𝐹 ∩ Fin) ⊆ Fin
2726sseli 3963 . . . . . 6 (𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin) → 𝑤 ∈ Fin)
2827adantl 484 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → 𝑤 ∈ Fin)
29 fipreima 8830 . . . . 5 ((𝐹 Fn 𝐼𝑤 ⊆ ran 𝐹𝑤 ∈ Fin) → ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)(𝐹𝑣) = 𝑤)
3021, 25, 28, 29syl3anc 1367 . . . 4 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)(𝐹𝑣) = 𝑤)
31 eqcom 2828 . . . . 5 ((𝐹𝑣) = 𝑤𝑤 = (𝐹𝑣))
3231rexbii 3247 . . . 4 (∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)(𝐹𝑣) = 𝑤 ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝑤 = (𝐹𝑣))
3330, 32sylib 220 . . 3 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝑤 = (𝐹𝑣))
34 inteq 4879 . . . . . 6 (𝑤 = (𝐹𝑣) → 𝑤 = (𝐹𝑣))
3534ineq2d 4189 . . . . 5 (𝑤 = (𝐹𝑣) → (𝐵 𝑤) = (𝐵 (𝐹𝑣)))
3635eqeq2d 2832 . . . 4 (𝑤 = (𝐹𝑣) → (𝐴 = (𝐵 𝑤) ↔ 𝐴 = (𝐵 (𝐹𝑣))))
3736adantl 484 . . 3 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 = (𝐹𝑣)) → (𝐴 = (𝐵 𝑤) ↔ 𝐴 = (𝐵 (𝐹𝑣))))
3819, 33, 37rexxfrd 5310 . 2 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (∃𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)𝐴 = (𝐵 𝑤) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 (𝐹𝑣))))
3920ad2antlr 725 . . . . . . 7 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝐹 Fn 𝐼)
40 inss1 4205 . . . . . . . . . 10 (𝒫 𝐼 ∩ Fin) ⊆ 𝒫 𝐼
4140sseli 3963 . . . . . . . . 9 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣 ∈ 𝒫 𝐼)
4241elpwid 4550 . . . . . . . 8 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣𝐼)
4342adantl 484 . . . . . . 7 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝑣𝐼)
44 imaiinfv 39310 . . . . . . 7 ((𝐹 Fn 𝐼𝑣𝐼) → 𝑦𝑣 (𝐹𝑦) = (𝐹𝑣))
4539, 43, 44syl2anc 586 . . . . . 6 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝑦𝑣 (𝐹𝑦) = (𝐹𝑣))
4645eqcomd 2827 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹𝑣) = 𝑦𝑣 (𝐹𝑦))
4746ineq2d 4189 . . . 4 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐵 (𝐹𝑣)) = (𝐵 𝑦𝑣 (𝐹𝑦)))
4847eqeq2d 2832 . . 3 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐴 = (𝐵 (𝐹𝑣)) ↔ 𝐴 = (𝐵 𝑦𝑣 (𝐹𝑦))))
4948rexbidva 3296 . 2 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 (𝐹𝑣)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 (𝐹𝑦))))
503, 38, 493bitrd 307 1 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 (𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  Vcvv 3494  cun 3934  cin 3935  wss 3936  𝒫 cpw 4539  {csn 4567   cint 4876   ciin 4920  ran crn 5556  cima 5558  Fun wfun 6349   Fn wfn 6350  wf 6351  cfv 6355  Fincfn 8509  ficfi 8874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-fin 8513  df-fi 8875
This theorem is referenced by:  elrfirn2  39313
  Copyright terms: Public domain W3C validator