Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfirn Structured version   Visualization version   GIF version

Theorem elrfirn 42676
Description: Elementhood in a set of relative finite intersections of an indexed family of sets. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfirn ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 (𝐹𝑦))))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵   𝑣,𝐹,𝑦   𝑣,𝐼   𝑣,𝑉   𝑦,𝑣
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐼(𝑦)   𝑉(𝑦)

Proof of Theorem elrfirn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 frn 6677 . . 3 (𝐹:𝐼⟶𝒫 𝐵 → ran 𝐹 ⊆ 𝒫 𝐵)
2 elrfi 42675 . . 3 ((𝐵𝑉 ∧ ran 𝐹 ⊆ 𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)𝐴 = (𝐵 𝑤)))
31, 2sylan2 593 . 2 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)𝐴 = (𝐵 𝑤)))
4 imassrn 6031 . . . . . 6 (𝐹𝑣) ⊆ ran 𝐹
5 pwexg 5328 . . . . . . . 8 (𝐵𝑉 → 𝒫 𝐵 ∈ V)
6 ssexg 5273 . . . . . . . 8 ((ran 𝐹 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V) → ran 𝐹 ∈ V)
71, 5, 6syl2anr 597 . . . . . . 7 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → ran 𝐹 ∈ V)
8 elpw2g 5283 . . . . . . 7 (ran 𝐹 ∈ V → ((𝐹𝑣) ∈ 𝒫 ran 𝐹 ↔ (𝐹𝑣) ⊆ ran 𝐹))
97, 8syl 17 . . . . . 6 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → ((𝐹𝑣) ∈ 𝒫 ran 𝐹 ↔ (𝐹𝑣) ⊆ ran 𝐹))
104, 9mpbiri 258 . . . . 5 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (𝐹𝑣) ∈ 𝒫 ran 𝐹)
1110adantr 480 . . . 4 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹𝑣) ∈ 𝒫 ran 𝐹)
12 ffun 6673 . . . . . 6 (𝐹:𝐼⟶𝒫 𝐵 → Fun 𝐹)
1312ad2antlr 727 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → Fun 𝐹)
14 inss2 4197 . . . . . . 7 (𝒫 𝐼 ∩ Fin) ⊆ Fin
1514sseli 3939 . . . . . 6 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣 ∈ Fin)
1615adantl 481 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝑣 ∈ Fin)
17 imafi 9240 . . . . 5 ((Fun 𝐹𝑣 ∈ Fin) → (𝐹𝑣) ∈ Fin)
1813, 16, 17syl2anc 584 . . . 4 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹𝑣) ∈ Fin)
1911, 18elind 4159 . . 3 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹𝑣) ∈ (𝒫 ran 𝐹 ∩ Fin))
20 ffn 6670 . . . . . 6 (𝐹:𝐼⟶𝒫 𝐵𝐹 Fn 𝐼)
2120ad2antlr 727 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → 𝐹 Fn 𝐼)
22 inss1 4196 . . . . . . . 8 (𝒫 ran 𝐹 ∩ Fin) ⊆ 𝒫 ran 𝐹
2322sseli 3939 . . . . . . 7 (𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin) → 𝑤 ∈ 𝒫 ran 𝐹)
2423elpwid 4568 . . . . . 6 (𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin) → 𝑤 ⊆ ran 𝐹)
2524adantl 481 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → 𝑤 ⊆ ran 𝐹)
26 inss2 4197 . . . . . . 7 (𝒫 ran 𝐹 ∩ Fin) ⊆ Fin
2726sseli 3939 . . . . . 6 (𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin) → 𝑤 ∈ Fin)
2827adantl 481 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → 𝑤 ∈ Fin)
29 fipreima 9285 . . . . 5 ((𝐹 Fn 𝐼𝑤 ⊆ ran 𝐹𝑤 ∈ Fin) → ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)(𝐹𝑣) = 𝑤)
3021, 25, 28, 29syl3anc 1373 . . . 4 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)(𝐹𝑣) = 𝑤)
31 eqcom 2736 . . . . 5 ((𝐹𝑣) = 𝑤𝑤 = (𝐹𝑣))
3231rexbii 3076 . . . 4 (∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)(𝐹𝑣) = 𝑤 ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝑤 = (𝐹𝑣))
3330, 32sylib 218 . . 3 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝑤 = (𝐹𝑣))
34 inteq 4909 . . . . . 6 (𝑤 = (𝐹𝑣) → 𝑤 = (𝐹𝑣))
3534ineq2d 4179 . . . . 5 (𝑤 = (𝐹𝑣) → (𝐵 𝑤) = (𝐵 (𝐹𝑣)))
3635eqeq2d 2740 . . . 4 (𝑤 = (𝐹𝑣) → (𝐴 = (𝐵 𝑤) ↔ 𝐴 = (𝐵 (𝐹𝑣))))
3736adantl 481 . . 3 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 = (𝐹𝑣)) → (𝐴 = (𝐵 𝑤) ↔ 𝐴 = (𝐵 (𝐹𝑣))))
3819, 33, 37rexxfrd 5359 . 2 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (∃𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)𝐴 = (𝐵 𝑤) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 (𝐹𝑣))))
3920ad2antlr 727 . . . . . . 7 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝐹 Fn 𝐼)
40 inss1 4196 . . . . . . . . . 10 (𝒫 𝐼 ∩ Fin) ⊆ 𝒫 𝐼
4140sseli 3939 . . . . . . . . 9 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣 ∈ 𝒫 𝐼)
4241elpwid 4568 . . . . . . . 8 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣𝐼)
4342adantl 481 . . . . . . 7 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝑣𝐼)
44 imaiinfv 42674 . . . . . . 7 ((𝐹 Fn 𝐼𝑣𝐼) → 𝑦𝑣 (𝐹𝑦) = (𝐹𝑣))
4539, 43, 44syl2anc 584 . . . . . 6 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝑦𝑣 (𝐹𝑦) = (𝐹𝑣))
4645eqcomd 2735 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹𝑣) = 𝑦𝑣 (𝐹𝑦))
4746ineq2d 4179 . . . 4 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐵 (𝐹𝑣)) = (𝐵 𝑦𝑣 (𝐹𝑦)))
4847eqeq2d 2740 . . 3 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐴 = (𝐵 (𝐹𝑣)) ↔ 𝐴 = (𝐵 𝑦𝑣 (𝐹𝑦))))
4948rexbidva 3155 . 2 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 (𝐹𝑣)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 (𝐹𝑦))))
503, 38, 493bitrd 305 1 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 (𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444  cun 3909  cin 3910  wss 3911  𝒫 cpw 4559  {csn 4585   cint 4906   ciin 4952  ran crn 5632  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  Fincfn 8895  ficfi 9337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-en 8896  df-dom 8897  df-fin 8899  df-fi 9338
This theorem is referenced by:  elrfirn2  42677
  Copyright terms: Public domain W3C validator