Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfirn Structured version   Visualization version   GIF version

Theorem elrfirn 42651
Description: Elementhood in a set of relative finite intersections of an indexed family of sets. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfirn ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 (𝐹𝑦))))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵   𝑣,𝐹,𝑦   𝑣,𝐼   𝑣,𝑉   𝑦,𝑣
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐼(𝑦)   𝑉(𝑦)

Proof of Theorem elrfirn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 frn 6754 . . 3 (𝐹:𝐼⟶𝒫 𝐵 → ran 𝐹 ⊆ 𝒫 𝐵)
2 elrfi 42650 . . 3 ((𝐵𝑉 ∧ ran 𝐹 ⊆ 𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)𝐴 = (𝐵 𝑤)))
31, 2sylan2 592 . 2 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)𝐴 = (𝐵 𝑤)))
4 imassrn 6100 . . . . . 6 (𝐹𝑣) ⊆ ran 𝐹
5 pwexg 5396 . . . . . . . 8 (𝐵𝑉 → 𝒫 𝐵 ∈ V)
6 ssexg 5341 . . . . . . . 8 ((ran 𝐹 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V) → ran 𝐹 ∈ V)
71, 5, 6syl2anr 596 . . . . . . 7 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → ran 𝐹 ∈ V)
8 elpw2g 5351 . . . . . . 7 (ran 𝐹 ∈ V → ((𝐹𝑣) ∈ 𝒫 ran 𝐹 ↔ (𝐹𝑣) ⊆ ran 𝐹))
97, 8syl 17 . . . . . 6 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → ((𝐹𝑣) ∈ 𝒫 ran 𝐹 ↔ (𝐹𝑣) ⊆ ran 𝐹))
104, 9mpbiri 258 . . . . 5 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (𝐹𝑣) ∈ 𝒫 ran 𝐹)
1110adantr 480 . . . 4 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹𝑣) ∈ 𝒫 ran 𝐹)
12 ffun 6750 . . . . . 6 (𝐹:𝐼⟶𝒫 𝐵 → Fun 𝐹)
1312ad2antlr 726 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → Fun 𝐹)
14 inss2 4259 . . . . . . 7 (𝒫 𝐼 ∩ Fin) ⊆ Fin
1514sseli 4004 . . . . . 6 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣 ∈ Fin)
1615adantl 481 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝑣 ∈ Fin)
17 imafi 9381 . . . . 5 ((Fun 𝐹𝑣 ∈ Fin) → (𝐹𝑣) ∈ Fin)
1813, 16, 17syl2anc 583 . . . 4 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹𝑣) ∈ Fin)
1911, 18elind 4223 . . 3 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹𝑣) ∈ (𝒫 ran 𝐹 ∩ Fin))
20 ffn 6747 . . . . . 6 (𝐹:𝐼⟶𝒫 𝐵𝐹 Fn 𝐼)
2120ad2antlr 726 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → 𝐹 Fn 𝐼)
22 inss1 4258 . . . . . . . 8 (𝒫 ran 𝐹 ∩ Fin) ⊆ 𝒫 ran 𝐹
2322sseli 4004 . . . . . . 7 (𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin) → 𝑤 ∈ 𝒫 ran 𝐹)
2423elpwid 4631 . . . . . 6 (𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin) → 𝑤 ⊆ ran 𝐹)
2524adantl 481 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → 𝑤 ⊆ ran 𝐹)
26 inss2 4259 . . . . . . 7 (𝒫 ran 𝐹 ∩ Fin) ⊆ Fin
2726sseli 4004 . . . . . 6 (𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin) → 𝑤 ∈ Fin)
2827adantl 481 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → 𝑤 ∈ Fin)
29 fipreima 9428 . . . . 5 ((𝐹 Fn 𝐼𝑤 ⊆ ran 𝐹𝑤 ∈ Fin) → ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)(𝐹𝑣) = 𝑤)
3021, 25, 28, 29syl3anc 1371 . . . 4 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)(𝐹𝑣) = 𝑤)
31 eqcom 2747 . . . . 5 ((𝐹𝑣) = 𝑤𝑤 = (𝐹𝑣))
3231rexbii 3100 . . . 4 (∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)(𝐹𝑣) = 𝑤 ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝑤 = (𝐹𝑣))
3330, 32sylib 218 . . 3 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)) → ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝑤 = (𝐹𝑣))
34 inteq 4973 . . . . . 6 (𝑤 = (𝐹𝑣) → 𝑤 = (𝐹𝑣))
3534ineq2d 4241 . . . . 5 (𝑤 = (𝐹𝑣) → (𝐵 𝑤) = (𝐵 (𝐹𝑣)))
3635eqeq2d 2751 . . . 4 (𝑤 = (𝐹𝑣) → (𝐴 = (𝐵 𝑤) ↔ 𝐴 = (𝐵 (𝐹𝑣))))
3736adantl 481 . . 3 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑤 = (𝐹𝑣)) → (𝐴 = (𝐵 𝑤) ↔ 𝐴 = (𝐵 (𝐹𝑣))))
3819, 33, 37rexxfrd 5427 . 2 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (∃𝑤 ∈ (𝒫 ran 𝐹 ∩ Fin)𝐴 = (𝐵 𝑤) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 (𝐹𝑣))))
3920ad2antlr 726 . . . . . . 7 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝐹 Fn 𝐼)
40 inss1 4258 . . . . . . . . . 10 (𝒫 𝐼 ∩ Fin) ⊆ 𝒫 𝐼
4140sseli 4004 . . . . . . . . 9 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣 ∈ 𝒫 𝐼)
4241elpwid 4631 . . . . . . . 8 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣𝐼)
4342adantl 481 . . . . . . 7 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝑣𝐼)
44 imaiinfv 42649 . . . . . . 7 ((𝐹 Fn 𝐼𝑣𝐼) → 𝑦𝑣 (𝐹𝑦) = (𝐹𝑣))
4539, 43, 44syl2anc 583 . . . . . 6 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → 𝑦𝑣 (𝐹𝑦) = (𝐹𝑣))
4645eqcomd 2746 . . . . 5 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐹𝑣) = 𝑦𝑣 (𝐹𝑦))
4746ineq2d 4241 . . . 4 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐵 (𝐹𝑣)) = (𝐵 𝑦𝑣 (𝐹𝑦)))
4847eqeq2d 2751 . . 3 (((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐴 = (𝐵 (𝐹𝑣)) ↔ 𝐴 = (𝐵 𝑦𝑣 (𝐹𝑦))))
4948rexbidva 3183 . 2 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 (𝐹𝑣)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 (𝐹𝑦))))
503, 38, 493bitrd 305 1 ((𝐵𝑉𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 (𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  cun 3974  cin 3975  wss 3976  𝒫 cpw 4622  {csn 4648   cint 4970   ciin 5016  ran crn 5701  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  Fincfn 9003  ficfi 9479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-dom 9005  df-fin 9007  df-fi 9480
This theorem is referenced by:  elrfirn2  42652
  Copyright terms: Public domain W3C validator