Step | Hyp | Ref
| Expression |
1 | | mapdcv.h |
. . . 4
β’ π» = (LHypβπΎ) |
2 | | mapdcv.m |
. . . 4
β’ π = ((mapdβπΎ)βπ) |
3 | | mapdcv.u |
. . . 4
β’ π = ((DVecHβπΎ)βπ) |
4 | | mapdcv.s |
. . . 4
β’ π = (LSubSpβπ) |
5 | | mapdcv.k |
. . . 4
β’ (π β (πΎ β HL β§ π β π»)) |
6 | | mapdcv.x |
. . . 4
β’ (π β π β π) |
7 | | mapdcv.y |
. . . 4
β’ (π β π β π) |
8 | 1, 2, 3, 4, 5, 6, 7 | mapdsord 40526 |
. . 3
β’ (π β ((πβπ) β (πβπ) β π β π)) |
9 | | mapdcv.d |
. . . . . . 7
β’ π· = ((LCDualβπΎ)βπ) |
10 | | eqid 2733 |
. . . . . . 7
β’
(LSubSpβπ·) =
(LSubSpβπ·) |
11 | 5 | adantr 482 |
. . . . . . 7
β’ ((π β§ π£ β π) β (πΎ β HL β§ π β π»)) |
12 | | simpr 486 |
. . . . . . 7
β’ ((π β§ π£ β π) β π£ β π) |
13 | 1, 2, 3, 4, 9, 10,
11, 12 | mapdcl2 40527 |
. . . . . 6
β’ ((π β§ π£ β π) β (πβπ£) β (LSubSpβπ·)) |
14 | 5 | adantr 482 |
. . . . . . . 8
β’ ((π β§ π β (LSubSpβπ·)) β (πΎ β HL β§ π β π»)) |
15 | 1, 2, 9, 10, 5 | mapdrn2 40522 |
. . . . . . . . . 10
β’ (π β ran π = (LSubSpβπ·)) |
16 | 15 | eleq2d 2820 |
. . . . . . . . 9
β’ (π β (π β ran π β π β (LSubSpβπ·))) |
17 | 16 | biimpar 479 |
. . . . . . . 8
β’ ((π β§ π β (LSubSpβπ·)) β π β ran π) |
18 | 1, 2, 3, 4, 14, 17 | mapdcnvcl 40523 |
. . . . . . 7
β’ ((π β§ π β (LSubSpβπ·)) β (β‘πβπ) β π) |
19 | 1, 2, 14, 17 | mapdcnvid2 40528 |
. . . . . . . 8
β’ ((π β§ π β (LSubSpβπ·)) β (πβ(β‘πβπ)) = π) |
20 | 19 | eqcomd 2739 |
. . . . . . 7
β’ ((π β§ π β (LSubSpβπ·)) β π = (πβ(β‘πβπ))) |
21 | | fveq2 6892 |
. . . . . . . 8
β’ (π£ = (β‘πβπ) β (πβπ£) = (πβ(β‘πβπ))) |
22 | 21 | rspceeqv 3634 |
. . . . . . 7
β’ (((β‘πβπ) β π β§ π = (πβ(β‘πβπ))) β βπ£ β π π = (πβπ£)) |
23 | 18, 20, 22 | syl2anc 585 |
. . . . . 6
β’ ((π β§ π β (LSubSpβπ·)) β βπ£ β π π = (πβπ£)) |
24 | | psseq2 4089 |
. . . . . . . 8
β’ (π = (πβπ£) β ((πβπ) β π β (πβπ) β (πβπ£))) |
25 | | psseq1 4088 |
. . . . . . . 8
β’ (π = (πβπ£) β (π β (πβπ) β (πβπ£) β (πβπ))) |
26 | 24, 25 | anbi12d 632 |
. . . . . . 7
β’ (π = (πβπ£) β (((πβπ) β π β§ π β (πβπ)) β ((πβπ) β (πβπ£) β§ (πβπ£) β (πβπ)))) |
27 | 26 | adantl 483 |
. . . . . 6
β’ ((π β§ π = (πβπ£)) β (((πβπ) β π β§ π β (πβπ)) β ((πβπ) β (πβπ£) β§ (πβπ£) β (πβπ)))) |
28 | 13, 23, 27 | rexxfrd 5408 |
. . . . 5
β’ (π β (βπ β (LSubSpβπ·)((πβπ) β π β§ π β (πβπ)) β βπ£ β π ((πβπ) β (πβπ£) β§ (πβπ£) β (πβπ)))) |
29 | 6 | adantr 482 |
. . . . . . . 8
β’ ((π β§ π£ β π) β π β π) |
30 | 1, 2, 3, 4, 11, 29, 12 | mapdsord 40526 |
. . . . . . 7
β’ ((π β§ π£ β π) β ((πβπ) β (πβπ£) β π β π£)) |
31 | 7 | adantr 482 |
. . . . . . . 8
β’ ((π β§ π£ β π) β π β π) |
32 | 1, 2, 3, 4, 11, 12, 31 | mapdsord 40526 |
. . . . . . 7
β’ ((π β§ π£ β π) β ((πβπ£) β (πβπ) β π£ β π)) |
33 | 30, 32 | anbi12d 632 |
. . . . . 6
β’ ((π β§ π£ β π) β (((πβπ) β (πβπ£) β§ (πβπ£) β (πβπ)) β (π β π£ β§ π£ β π))) |
34 | 33 | rexbidva 3177 |
. . . . 5
β’ (π β (βπ£ β π ((πβπ) β (πβπ£) β§ (πβπ£) β (πβπ)) β βπ£ β π (π β π£ β§ π£ β π))) |
35 | 28, 34 | bitrd 279 |
. . . 4
β’ (π β (βπ β (LSubSpβπ·)((πβπ) β π β§ π β (πβπ)) β βπ£ β π (π β π£ β§ π£ β π))) |
36 | 35 | notbid 318 |
. . 3
β’ (π β (Β¬ βπ β (LSubSpβπ·)((πβπ) β π β§ π β (πβπ)) β Β¬ βπ£ β π (π β π£ β§ π£ β π))) |
37 | 8, 36 | anbi12d 632 |
. 2
β’ (π β (((πβπ) β (πβπ) β§ Β¬ βπ β (LSubSpβπ·)((πβπ) β π β§ π β (πβπ))) β (π β π β§ Β¬ βπ£ β π (π β π£ β§ π£ β π)))) |
38 | | mapdcv.e |
. . 3
β’ πΈ = ( βL
βπ·) |
39 | 1, 9, 5 | lcdlmod 40463 |
. . 3
β’ (π β π· β LMod) |
40 | 1, 2, 3, 4, 9, 10,
5, 6 | mapdcl2 40527 |
. . 3
β’ (π β (πβπ) β (LSubSpβπ·)) |
41 | 1, 2, 3, 4, 9, 10,
5, 7 | mapdcl2 40527 |
. . 3
β’ (π β (πβπ) β (LSubSpβπ·)) |
42 | 10, 38, 39, 40, 41 | lcvbr 37891 |
. 2
β’ (π β ((πβπ)πΈ(πβπ) β ((πβπ) β (πβπ) β§ Β¬ βπ β (LSubSpβπ·)((πβπ) β π β§ π β (πβπ))))) |
43 | | mapdcv.c |
. . 3
β’ πΆ = ( βL
βπ) |
44 | 1, 3, 5 | dvhlmod 39981 |
. . 3
β’ (π β π β LMod) |
45 | 4, 43, 44, 6, 7 | lcvbr 37891 |
. 2
β’ (π β (ππΆπ β (π β π β§ Β¬ βπ£ β π (π β π£ β§ π£ β π)))) |
46 | 37, 42, 45 | 3bitr4rd 312 |
1
β’ (π β (ππΆπ β (πβπ)πΈ(πβπ))) |