Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdcv Structured version   Visualization version   GIF version

Theorem mapdcv 39674
Description: Covering property of the converse of the map defined by df-mapd 39639. (Contributed by NM, 14-Mar-2015.)
Hypotheses
Ref Expression
mapdcv.h 𝐻 = (LHyp‘𝐾)
mapdcv.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdcv.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdcv.s 𝑆 = (LSubSp‘𝑈)
mapdcv.c 𝐶 = ( ⋖L𝑈)
mapdcv.d 𝐷 = ((LCDual‘𝐾)‘𝑊)
mapdcv.e 𝐸 = ( ⋖L𝐷)
mapdcv.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdcv.x (𝜑𝑋𝑆)
mapdcv.y (𝜑𝑌𝑆)
Assertion
Ref Expression
mapdcv (𝜑 → (𝑋𝐶𝑌 ↔ (𝑀𝑋)𝐸(𝑀𝑌)))

Proof of Theorem mapdcv
Dummy variables 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdcv.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdcv.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdcv.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdcv.s . . . 4 𝑆 = (LSubSp‘𝑈)
5 mapdcv.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 mapdcv.x . . . 4 (𝜑𝑋𝑆)
7 mapdcv.y . . . 4 (𝜑𝑌𝑆)
81, 2, 3, 4, 5, 6, 7mapdsord 39669 . . 3 (𝜑 → ((𝑀𝑋) ⊊ (𝑀𝑌) ↔ 𝑋𝑌))
9 mapdcv.d . . . . . . 7 𝐷 = ((LCDual‘𝐾)‘𝑊)
10 eqid 2738 . . . . . . 7 (LSubSp‘𝐷) = (LSubSp‘𝐷)
115adantr 481 . . . . . . 7 ((𝜑𝑣𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simpr 485 . . . . . . 7 ((𝜑𝑣𝑆) → 𝑣𝑆)
131, 2, 3, 4, 9, 10, 11, 12mapdcl2 39670 . . . . . 6 ((𝜑𝑣𝑆) → (𝑀𝑣) ∈ (LSubSp‘𝐷))
145adantr 481 . . . . . . . 8 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
151, 2, 9, 10, 5mapdrn2 39665 . . . . . . . . . 10 (𝜑 → ran 𝑀 = (LSubSp‘𝐷))
1615eleq2d 2824 . . . . . . . . 9 (𝜑 → (𝑓 ∈ ran 𝑀𝑓 ∈ (LSubSp‘𝐷)))
1716biimpar 478 . . . . . . . 8 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → 𝑓 ∈ ran 𝑀)
181, 2, 3, 4, 14, 17mapdcnvcl 39666 . . . . . . 7 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → (𝑀𝑓) ∈ 𝑆)
191, 2, 14, 17mapdcnvid2 39671 . . . . . . . 8 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → (𝑀‘(𝑀𝑓)) = 𝑓)
2019eqcomd 2744 . . . . . . 7 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → 𝑓 = (𝑀‘(𝑀𝑓)))
21 fveq2 6774 . . . . . . . 8 (𝑣 = (𝑀𝑓) → (𝑀𝑣) = (𝑀‘(𝑀𝑓)))
2221rspceeqv 3575 . . . . . . 7 (((𝑀𝑓) ∈ 𝑆𝑓 = (𝑀‘(𝑀𝑓))) → ∃𝑣𝑆 𝑓 = (𝑀𝑣))
2318, 20, 22syl2anc 584 . . . . . 6 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → ∃𝑣𝑆 𝑓 = (𝑀𝑣))
24 psseq2 4023 . . . . . . . 8 (𝑓 = (𝑀𝑣) → ((𝑀𝑋) ⊊ 𝑓 ↔ (𝑀𝑋) ⊊ (𝑀𝑣)))
25 psseq1 4022 . . . . . . . 8 (𝑓 = (𝑀𝑣) → (𝑓 ⊊ (𝑀𝑌) ↔ (𝑀𝑣) ⊊ (𝑀𝑌)))
2624, 25anbi12d 631 . . . . . . 7 (𝑓 = (𝑀𝑣) → (((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌))))
2726adantl 482 . . . . . 6 ((𝜑𝑓 = (𝑀𝑣)) → (((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌))))
2813, 23, 27rexxfrd 5332 . . . . 5 (𝜑 → (∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ∃𝑣𝑆 ((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌))))
296adantr 481 . . . . . . . 8 ((𝜑𝑣𝑆) → 𝑋𝑆)
301, 2, 3, 4, 11, 29, 12mapdsord 39669 . . . . . . 7 ((𝜑𝑣𝑆) → ((𝑀𝑋) ⊊ (𝑀𝑣) ↔ 𝑋𝑣))
317adantr 481 . . . . . . . 8 ((𝜑𝑣𝑆) → 𝑌𝑆)
321, 2, 3, 4, 11, 12, 31mapdsord 39669 . . . . . . 7 ((𝜑𝑣𝑆) → ((𝑀𝑣) ⊊ (𝑀𝑌) ↔ 𝑣𝑌))
3330, 32anbi12d 631 . . . . . 6 ((𝜑𝑣𝑆) → (((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌)) ↔ (𝑋𝑣𝑣𝑌)))
3433rexbidva 3225 . . . . 5 (𝜑 → (∃𝑣𝑆 ((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌)) ↔ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌)))
3528, 34bitrd 278 . . . 4 (𝜑 → (∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌)))
3635notbid 318 . . 3 (𝜑 → (¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ¬ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌)))
378, 36anbi12d 631 . 2 (𝜑 → (((𝑀𝑋) ⊊ (𝑀𝑌) ∧ ¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌))) ↔ (𝑋𝑌 ∧ ¬ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌))))
38 mapdcv.e . . 3 𝐸 = ( ⋖L𝐷)
391, 9, 5lcdlmod 39606 . . 3 (𝜑𝐷 ∈ LMod)
401, 2, 3, 4, 9, 10, 5, 6mapdcl2 39670 . . 3 (𝜑 → (𝑀𝑋) ∈ (LSubSp‘𝐷))
411, 2, 3, 4, 9, 10, 5, 7mapdcl2 39670 . . 3 (𝜑 → (𝑀𝑌) ∈ (LSubSp‘𝐷))
4210, 38, 39, 40, 41lcvbr 37035 . 2 (𝜑 → ((𝑀𝑋)𝐸(𝑀𝑌) ↔ ((𝑀𝑋) ⊊ (𝑀𝑌) ∧ ¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)))))
43 mapdcv.c . . 3 𝐶 = ( ⋖L𝑈)
441, 3, 5dvhlmod 39124 . . 3 (𝜑𝑈 ∈ LMod)
454, 43, 44, 6, 7lcvbr 37035 . 2 (𝜑 → (𝑋𝐶𝑌 ↔ (𝑋𝑌 ∧ ¬ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌))))
4637, 42, 453bitr4rd 312 1 (𝜑 → (𝑋𝐶𝑌 ↔ (𝑀𝑋)𝐸(𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  wpss 3888   class class class wbr 5074  ccnv 5588  ran crn 5590  cfv 6433  LModclmod 20123  LSubSpclss 20193  L clcv 37032  HLchlt 37364  LHypclh 37998  DVecHcdvh 39092  LCDualclcd 39600  mapdcmpd 39638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-mre 17295  df-mrc 17296  df-acs 17298  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-oppg 18950  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990  df-lshyp 36991  df-lcv 37033  df-lfl 37072  df-lkr 37100  df-ldual 37138  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tgrp 38757  df-tendo 38769  df-edring 38771  df-dveca 39017  df-disoa 39043  df-dvech 39093  df-dib 39153  df-dic 39187  df-dih 39243  df-doch 39362  df-djh 39409  df-lcdual 39601  df-mapd 39639
This theorem is referenced by:  mapdcnvatN  39680  mapdat  39681
  Copyright terms: Public domain W3C validator