Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdcv Structured version   Visualization version   GIF version

Theorem mapdcv 38800
Description: Covering property of the converse of the map defined by df-mapd 38765. (Contributed by NM, 14-Mar-2015.)
Hypotheses
Ref Expression
mapdcv.h 𝐻 = (LHyp‘𝐾)
mapdcv.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdcv.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdcv.s 𝑆 = (LSubSp‘𝑈)
mapdcv.c 𝐶 = ( ⋖L𝑈)
mapdcv.d 𝐷 = ((LCDual‘𝐾)‘𝑊)
mapdcv.e 𝐸 = ( ⋖L𝐷)
mapdcv.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdcv.x (𝜑𝑋𝑆)
mapdcv.y (𝜑𝑌𝑆)
Assertion
Ref Expression
mapdcv (𝜑 → (𝑋𝐶𝑌 ↔ (𝑀𝑋)𝐸(𝑀𝑌)))

Proof of Theorem mapdcv
Dummy variables 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdcv.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdcv.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdcv.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdcv.s . . . 4 𝑆 = (LSubSp‘𝑈)
5 mapdcv.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 mapdcv.x . . . 4 (𝜑𝑋𝑆)
7 mapdcv.y . . . 4 (𝜑𝑌𝑆)
81, 2, 3, 4, 5, 6, 7mapdsord 38795 . . 3 (𝜑 → ((𝑀𝑋) ⊊ (𝑀𝑌) ↔ 𝑋𝑌))
9 mapdcv.d . . . . . . 7 𝐷 = ((LCDual‘𝐾)‘𝑊)
10 eqid 2824 . . . . . . 7 (LSubSp‘𝐷) = (LSubSp‘𝐷)
115adantr 483 . . . . . . 7 ((𝜑𝑣𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simpr 487 . . . . . . 7 ((𝜑𝑣𝑆) → 𝑣𝑆)
131, 2, 3, 4, 9, 10, 11, 12mapdcl2 38796 . . . . . 6 ((𝜑𝑣𝑆) → (𝑀𝑣) ∈ (LSubSp‘𝐷))
145adantr 483 . . . . . . . 8 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
151, 2, 9, 10, 5mapdrn2 38791 . . . . . . . . . 10 (𝜑 → ran 𝑀 = (LSubSp‘𝐷))
1615eleq2d 2901 . . . . . . . . 9 (𝜑 → (𝑓 ∈ ran 𝑀𝑓 ∈ (LSubSp‘𝐷)))
1716biimpar 480 . . . . . . . 8 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → 𝑓 ∈ ran 𝑀)
181, 2, 3, 4, 14, 17mapdcnvcl 38792 . . . . . . 7 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → (𝑀𝑓) ∈ 𝑆)
191, 2, 14, 17mapdcnvid2 38797 . . . . . . . 8 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → (𝑀‘(𝑀𝑓)) = 𝑓)
2019eqcomd 2830 . . . . . . 7 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → 𝑓 = (𝑀‘(𝑀𝑓)))
21 fveq2 6673 . . . . . . . 8 (𝑣 = (𝑀𝑓) → (𝑀𝑣) = (𝑀‘(𝑀𝑓)))
2221rspceeqv 3641 . . . . . . 7 (((𝑀𝑓) ∈ 𝑆𝑓 = (𝑀‘(𝑀𝑓))) → ∃𝑣𝑆 𝑓 = (𝑀𝑣))
2318, 20, 22syl2anc 586 . . . . . 6 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → ∃𝑣𝑆 𝑓 = (𝑀𝑣))
24 psseq2 4068 . . . . . . . 8 (𝑓 = (𝑀𝑣) → ((𝑀𝑋) ⊊ 𝑓 ↔ (𝑀𝑋) ⊊ (𝑀𝑣)))
25 psseq1 4067 . . . . . . . 8 (𝑓 = (𝑀𝑣) → (𝑓 ⊊ (𝑀𝑌) ↔ (𝑀𝑣) ⊊ (𝑀𝑌)))
2624, 25anbi12d 632 . . . . . . 7 (𝑓 = (𝑀𝑣) → (((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌))))
2726adantl 484 . . . . . 6 ((𝜑𝑓 = (𝑀𝑣)) → (((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌))))
2813, 23, 27rexxfrd 5313 . . . . 5 (𝜑 → (∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ∃𝑣𝑆 ((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌))))
296adantr 483 . . . . . . . 8 ((𝜑𝑣𝑆) → 𝑋𝑆)
301, 2, 3, 4, 11, 29, 12mapdsord 38795 . . . . . . 7 ((𝜑𝑣𝑆) → ((𝑀𝑋) ⊊ (𝑀𝑣) ↔ 𝑋𝑣))
317adantr 483 . . . . . . . 8 ((𝜑𝑣𝑆) → 𝑌𝑆)
321, 2, 3, 4, 11, 12, 31mapdsord 38795 . . . . . . 7 ((𝜑𝑣𝑆) → ((𝑀𝑣) ⊊ (𝑀𝑌) ↔ 𝑣𝑌))
3330, 32anbi12d 632 . . . . . 6 ((𝜑𝑣𝑆) → (((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌)) ↔ (𝑋𝑣𝑣𝑌)))
3433rexbidva 3299 . . . . 5 (𝜑 → (∃𝑣𝑆 ((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌)) ↔ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌)))
3528, 34bitrd 281 . . . 4 (𝜑 → (∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌)))
3635notbid 320 . . 3 (𝜑 → (¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ¬ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌)))
378, 36anbi12d 632 . 2 (𝜑 → (((𝑀𝑋) ⊊ (𝑀𝑌) ∧ ¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌))) ↔ (𝑋𝑌 ∧ ¬ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌))))
38 mapdcv.e . . 3 𝐸 = ( ⋖L𝐷)
391, 9, 5lcdlmod 38732 . . 3 (𝜑𝐷 ∈ LMod)
401, 2, 3, 4, 9, 10, 5, 6mapdcl2 38796 . . 3 (𝜑 → (𝑀𝑋) ∈ (LSubSp‘𝐷))
411, 2, 3, 4, 9, 10, 5, 7mapdcl2 38796 . . 3 (𝜑 → (𝑀𝑌) ∈ (LSubSp‘𝐷))
4210, 38, 39, 40, 41lcvbr 36161 . 2 (𝜑 → ((𝑀𝑋)𝐸(𝑀𝑌) ↔ ((𝑀𝑋) ⊊ (𝑀𝑌) ∧ ¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)))))
43 mapdcv.c . . 3 𝐶 = ( ⋖L𝑈)
441, 3, 5dvhlmod 38250 . . 3 (𝜑𝑈 ∈ LMod)
454, 43, 44, 6, 7lcvbr 36161 . 2 (𝜑 → (𝑋𝐶𝑌 ↔ (𝑋𝑌 ∧ ¬ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌))))
4637, 42, 453bitr4rd 314 1 (𝜑 → (𝑋𝐶𝑌 ↔ (𝑀𝑋)𝐸(𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3142  wpss 3940   class class class wbr 5069  ccnv 5557  ran crn 5559  cfv 6358  LModclmod 19637  LSubSpclss 19706  L clcv 36158  HLchlt 36490  LHypclh 37124  DVecHcdvh 38218  LCDualclcd 38726  mapdcmpd 38764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-riotaBAD 36093
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-tpos 7895  df-undef 7942  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-0g 16718  df-mre 16860  df-mrc 16861  df-acs 16863  df-proset 17541  df-poset 17559  df-plt 17571  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p0 17652  df-p1 17653  df-lat 17659  df-clat 17721  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-cntz 18450  df-oppg 18477  df-lsm 18764  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-drng 19507  df-lmod 19639  df-lss 19707  df-lsp 19747  df-lvec 19878  df-lsatoms 36116  df-lshyp 36117  df-lcv 36159  df-lfl 36198  df-lkr 36226  df-ldual 36264  df-oposet 36316  df-ol 36318  df-oml 36319  df-covers 36406  df-ats 36407  df-atl 36438  df-cvlat 36462  df-hlat 36491  df-llines 36638  df-lplanes 36639  df-lvols 36640  df-lines 36641  df-psubsp 36643  df-pmap 36644  df-padd 36936  df-lhyp 37128  df-laut 37129  df-ldil 37244  df-ltrn 37245  df-trl 37299  df-tgrp 37883  df-tendo 37895  df-edring 37897  df-dveca 38143  df-disoa 38169  df-dvech 38219  df-dib 38279  df-dic 38313  df-dih 38369  df-doch 38488  df-djh 38535  df-lcdual 38727  df-mapd 38765
This theorem is referenced by:  mapdcnvatN  38806  mapdat  38807
  Copyright terms: Public domain W3C validator