Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdcv | Structured version Visualization version GIF version |
Description: Covering property of the converse of the map defined by df-mapd 39376. (Contributed by NM, 14-Mar-2015.) |
Ref | Expression |
---|---|
mapdcv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdcv.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdcv.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdcv.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
mapdcv.c | ⊢ 𝐶 = ( ⋖L ‘𝑈) |
mapdcv.d | ⊢ 𝐷 = ((LCDual‘𝐾)‘𝑊) |
mapdcv.e | ⊢ 𝐸 = ( ⋖L ‘𝐷) |
mapdcv.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdcv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
mapdcv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
mapdcv | ⊢ (𝜑 → (𝑋𝐶𝑌 ↔ (𝑀‘𝑋)𝐸(𝑀‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdcv.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdcv.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
3 | mapdcv.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | mapdcv.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑈) | |
5 | mapdcv.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | mapdcv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
7 | mapdcv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
8 | 1, 2, 3, 4, 5, 6, 7 | mapdsord 39406 | . . 3 ⊢ (𝜑 → ((𝑀‘𝑋) ⊊ (𝑀‘𝑌) ↔ 𝑋 ⊊ 𝑌)) |
9 | mapdcv.d | . . . . . . 7 ⊢ 𝐷 = ((LCDual‘𝐾)‘𝑊) | |
10 | eqid 2737 | . . . . . . 7 ⊢ (LSubSp‘𝐷) = (LSubSp‘𝐷) | |
11 | 5 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
12 | simpr 488 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑣 ∈ 𝑆) | |
13 | 1, 2, 3, 4, 9, 10, 11, 12 | mapdcl2 39407 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → (𝑀‘𝑣) ∈ (LSubSp‘𝐷)) |
14 | 5 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
15 | 1, 2, 9, 10, 5 | mapdrn2 39402 | . . . . . . . . . 10 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘𝐷)) |
16 | 15 | eleq2d 2823 | . . . . . . . . 9 ⊢ (𝜑 → (𝑓 ∈ ran 𝑀 ↔ 𝑓 ∈ (LSubSp‘𝐷))) |
17 | 16 | biimpar 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → 𝑓 ∈ ran 𝑀) |
18 | 1, 2, 3, 4, 14, 17 | mapdcnvcl 39403 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → (◡𝑀‘𝑓) ∈ 𝑆) |
19 | 1, 2, 14, 17 | mapdcnvid2 39408 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → (𝑀‘(◡𝑀‘𝑓)) = 𝑓) |
20 | 19 | eqcomd 2743 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → 𝑓 = (𝑀‘(◡𝑀‘𝑓))) |
21 | fveq2 6717 | . . . . . . . 8 ⊢ (𝑣 = (◡𝑀‘𝑓) → (𝑀‘𝑣) = (𝑀‘(◡𝑀‘𝑓))) | |
22 | 21 | rspceeqv 3552 | . . . . . . 7 ⊢ (((◡𝑀‘𝑓) ∈ 𝑆 ∧ 𝑓 = (𝑀‘(◡𝑀‘𝑓))) → ∃𝑣 ∈ 𝑆 𝑓 = (𝑀‘𝑣)) |
23 | 18, 20, 22 | syl2anc 587 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → ∃𝑣 ∈ 𝑆 𝑓 = (𝑀‘𝑣)) |
24 | psseq2 4003 | . . . . . . . 8 ⊢ (𝑓 = (𝑀‘𝑣) → ((𝑀‘𝑋) ⊊ 𝑓 ↔ (𝑀‘𝑋) ⊊ (𝑀‘𝑣))) | |
25 | psseq1 4002 | . . . . . . . 8 ⊢ (𝑓 = (𝑀‘𝑣) → (𝑓 ⊊ (𝑀‘𝑌) ↔ (𝑀‘𝑣) ⊊ (𝑀‘𝑌))) | |
26 | 24, 25 | anbi12d 634 | . . . . . . 7 ⊢ (𝑓 = (𝑀‘𝑣) → (((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)))) |
27 | 26 | adantl 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 = (𝑀‘𝑣)) → (((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)))) |
28 | 13, 23, 27 | rexxfrd 5302 | . . . . 5 ⊢ (𝜑 → (∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ∃𝑣 ∈ 𝑆 ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)))) |
29 | 6 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑋 ∈ 𝑆) |
30 | 1, 2, 3, 4, 11, 29, 12 | mapdsord 39406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ↔ 𝑋 ⊊ 𝑣)) |
31 | 7 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑌 ∈ 𝑆) |
32 | 1, 2, 3, 4, 11, 12, 31 | mapdsord 39406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → ((𝑀‘𝑣) ⊊ (𝑀‘𝑌) ↔ 𝑣 ⊊ 𝑌)) |
33 | 30, 32 | anbi12d 634 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → (((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)) ↔ (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌))) |
34 | 33 | rexbidva 3215 | . . . . 5 ⊢ (𝜑 → (∃𝑣 ∈ 𝑆 ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)) ↔ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌))) |
35 | 28, 34 | bitrd 282 | . . . 4 ⊢ (𝜑 → (∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌))) |
36 | 35 | notbid 321 | . . 3 ⊢ (𝜑 → (¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ¬ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌))) |
37 | 8, 36 | anbi12d 634 | . 2 ⊢ (𝜑 → (((𝑀‘𝑋) ⊊ (𝑀‘𝑌) ∧ ¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌))) ↔ (𝑋 ⊊ 𝑌 ∧ ¬ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌)))) |
38 | mapdcv.e | . . 3 ⊢ 𝐸 = ( ⋖L ‘𝐷) | |
39 | 1, 9, 5 | lcdlmod 39343 | . . 3 ⊢ (𝜑 → 𝐷 ∈ LMod) |
40 | 1, 2, 3, 4, 9, 10, 5, 6 | mapdcl2 39407 | . . 3 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (LSubSp‘𝐷)) |
41 | 1, 2, 3, 4, 9, 10, 5, 7 | mapdcl2 39407 | . . 3 ⊢ (𝜑 → (𝑀‘𝑌) ∈ (LSubSp‘𝐷)) |
42 | 10, 38, 39, 40, 41 | lcvbr 36772 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋)𝐸(𝑀‘𝑌) ↔ ((𝑀‘𝑋) ⊊ (𝑀‘𝑌) ∧ ¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌))))) |
43 | mapdcv.c | . . 3 ⊢ 𝐶 = ( ⋖L ‘𝑈) | |
44 | 1, 3, 5 | dvhlmod 38861 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
45 | 4, 43, 44, 6, 7 | lcvbr 36772 | . 2 ⊢ (𝜑 → (𝑋𝐶𝑌 ↔ (𝑋 ⊊ 𝑌 ∧ ¬ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌)))) |
46 | 37, 42, 45 | 3bitr4rd 315 | 1 ⊢ (𝜑 → (𝑋𝐶𝑌 ↔ (𝑀‘𝑋)𝐸(𝑀‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 ⊊ wpss 3867 class class class wbr 5053 ◡ccnv 5550 ran crn 5552 ‘cfv 6380 LModclmod 19899 LSubSpclss 19968 ⋖L clcv 36769 HLchlt 37101 LHypclh 37735 DVecHcdvh 38829 LCDualclcd 39337 mapdcmpd 39375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-riotaBAD 36704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-tpos 7968 df-undef 8015 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-0g 16946 df-mre 17089 df-mrc 17090 df-acs 17092 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-clat 18005 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-cntz 18711 df-oppg 18738 df-lsm 19025 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-invr 19690 df-dvr 19701 df-drng 19769 df-lmod 19901 df-lss 19969 df-lsp 20009 df-lvec 20140 df-lsatoms 36727 df-lshyp 36728 df-lcv 36770 df-lfl 36809 df-lkr 36837 df-ldual 36875 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-llines 37249 df-lplanes 37250 df-lvols 37251 df-lines 37252 df-psubsp 37254 df-pmap 37255 df-padd 37547 df-lhyp 37739 df-laut 37740 df-ldil 37855 df-ltrn 37856 df-trl 37910 df-tgrp 38494 df-tendo 38506 df-edring 38508 df-dveca 38754 df-disoa 38780 df-dvech 38830 df-dib 38890 df-dic 38924 df-dih 38980 df-doch 39099 df-djh 39146 df-lcdual 39338 df-mapd 39376 |
This theorem is referenced by: mapdcnvatN 39417 mapdat 39418 |
Copyright terms: Public domain | W3C validator |