![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdcv | Structured version Visualization version GIF version |
Description: Covering property of the converse of the map defined by df-mapd 41582. (Contributed by NM, 14-Mar-2015.) |
Ref | Expression |
---|---|
mapdcv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdcv.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdcv.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdcv.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
mapdcv.c | ⊢ 𝐶 = ( ⋖L ‘𝑈) |
mapdcv.d | ⊢ 𝐷 = ((LCDual‘𝐾)‘𝑊) |
mapdcv.e | ⊢ 𝐸 = ( ⋖L ‘𝐷) |
mapdcv.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdcv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
mapdcv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
mapdcv | ⊢ (𝜑 → (𝑋𝐶𝑌 ↔ (𝑀‘𝑋)𝐸(𝑀‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdcv.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdcv.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
3 | mapdcv.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | mapdcv.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑈) | |
5 | mapdcv.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | mapdcv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
7 | mapdcv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
8 | 1, 2, 3, 4, 5, 6, 7 | mapdsord 41612 | . . 3 ⊢ (𝜑 → ((𝑀‘𝑋) ⊊ (𝑀‘𝑌) ↔ 𝑋 ⊊ 𝑌)) |
9 | mapdcv.d | . . . . . . 7 ⊢ 𝐷 = ((LCDual‘𝐾)‘𝑊) | |
10 | eqid 2740 | . . . . . . 7 ⊢ (LSubSp‘𝐷) = (LSubSp‘𝐷) | |
11 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
12 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑣 ∈ 𝑆) | |
13 | 1, 2, 3, 4, 9, 10, 11, 12 | mapdcl2 41613 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → (𝑀‘𝑣) ∈ (LSubSp‘𝐷)) |
14 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
15 | 1, 2, 9, 10, 5 | mapdrn2 41608 | . . . . . . . . . 10 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘𝐷)) |
16 | 15 | eleq2d 2830 | . . . . . . . . 9 ⊢ (𝜑 → (𝑓 ∈ ran 𝑀 ↔ 𝑓 ∈ (LSubSp‘𝐷))) |
17 | 16 | biimpar 477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → 𝑓 ∈ ran 𝑀) |
18 | 1, 2, 3, 4, 14, 17 | mapdcnvcl 41609 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → (◡𝑀‘𝑓) ∈ 𝑆) |
19 | 1, 2, 14, 17 | mapdcnvid2 41614 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → (𝑀‘(◡𝑀‘𝑓)) = 𝑓) |
20 | 19 | eqcomd 2746 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → 𝑓 = (𝑀‘(◡𝑀‘𝑓))) |
21 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑣 = (◡𝑀‘𝑓) → (𝑀‘𝑣) = (𝑀‘(◡𝑀‘𝑓))) | |
22 | 21 | rspceeqv 3658 | . . . . . . 7 ⊢ (((◡𝑀‘𝑓) ∈ 𝑆 ∧ 𝑓 = (𝑀‘(◡𝑀‘𝑓))) → ∃𝑣 ∈ 𝑆 𝑓 = (𝑀‘𝑣)) |
23 | 18, 20, 22 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → ∃𝑣 ∈ 𝑆 𝑓 = (𝑀‘𝑣)) |
24 | psseq2 4114 | . . . . . . . 8 ⊢ (𝑓 = (𝑀‘𝑣) → ((𝑀‘𝑋) ⊊ 𝑓 ↔ (𝑀‘𝑋) ⊊ (𝑀‘𝑣))) | |
25 | psseq1 4113 | . . . . . . . 8 ⊢ (𝑓 = (𝑀‘𝑣) → (𝑓 ⊊ (𝑀‘𝑌) ↔ (𝑀‘𝑣) ⊊ (𝑀‘𝑌))) | |
26 | 24, 25 | anbi12d 631 | . . . . . . 7 ⊢ (𝑓 = (𝑀‘𝑣) → (((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)))) |
27 | 26 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 = (𝑀‘𝑣)) → (((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)))) |
28 | 13, 23, 27 | rexxfrd 5427 | . . . . 5 ⊢ (𝜑 → (∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ∃𝑣 ∈ 𝑆 ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)))) |
29 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑋 ∈ 𝑆) |
30 | 1, 2, 3, 4, 11, 29, 12 | mapdsord 41612 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ↔ 𝑋 ⊊ 𝑣)) |
31 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑌 ∈ 𝑆) |
32 | 1, 2, 3, 4, 11, 12, 31 | mapdsord 41612 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → ((𝑀‘𝑣) ⊊ (𝑀‘𝑌) ↔ 𝑣 ⊊ 𝑌)) |
33 | 30, 32 | anbi12d 631 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → (((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)) ↔ (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌))) |
34 | 33 | rexbidva 3183 | . . . . 5 ⊢ (𝜑 → (∃𝑣 ∈ 𝑆 ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)) ↔ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌))) |
35 | 28, 34 | bitrd 279 | . . . 4 ⊢ (𝜑 → (∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌))) |
36 | 35 | notbid 318 | . . 3 ⊢ (𝜑 → (¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ¬ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌))) |
37 | 8, 36 | anbi12d 631 | . 2 ⊢ (𝜑 → (((𝑀‘𝑋) ⊊ (𝑀‘𝑌) ∧ ¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌))) ↔ (𝑋 ⊊ 𝑌 ∧ ¬ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌)))) |
38 | mapdcv.e | . . 3 ⊢ 𝐸 = ( ⋖L ‘𝐷) | |
39 | 1, 9, 5 | lcdlmod 41549 | . . 3 ⊢ (𝜑 → 𝐷 ∈ LMod) |
40 | 1, 2, 3, 4, 9, 10, 5, 6 | mapdcl2 41613 | . . 3 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (LSubSp‘𝐷)) |
41 | 1, 2, 3, 4, 9, 10, 5, 7 | mapdcl2 41613 | . . 3 ⊢ (𝜑 → (𝑀‘𝑌) ∈ (LSubSp‘𝐷)) |
42 | 10, 38, 39, 40, 41 | lcvbr 38977 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋)𝐸(𝑀‘𝑌) ↔ ((𝑀‘𝑋) ⊊ (𝑀‘𝑌) ∧ ¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌))))) |
43 | mapdcv.c | . . 3 ⊢ 𝐶 = ( ⋖L ‘𝑈) | |
44 | 1, 3, 5 | dvhlmod 41067 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
45 | 4, 43, 44, 6, 7 | lcvbr 38977 | . 2 ⊢ (𝜑 → (𝑋𝐶𝑌 ↔ (𝑋 ⊊ 𝑌 ∧ ¬ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌)))) |
46 | 37, 42, 45 | 3bitr4rd 312 | 1 ⊢ (𝜑 → (𝑋𝐶𝑌 ↔ (𝑀‘𝑋)𝐸(𝑀‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ⊊ wpss 3977 class class class wbr 5166 ◡ccnv 5699 ran crn 5701 ‘cfv 6573 LModclmod 20880 LSubSpclss 20952 ⋖L clcv 38974 HLchlt 39306 LHypclh 39941 DVecHcdvh 41035 LCDualclcd 41543 mapdcmpd 41581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-0g 17501 df-mre 17644 df-mrc 17645 df-acs 17647 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-oppg 19386 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-nzr 20539 df-rlreg 20716 df-domn 20717 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lsatoms 38932 df-lshyp 38933 df-lcv 38975 df-lfl 39014 df-lkr 39042 df-ldual 39080 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tgrp 40700 df-tendo 40712 df-edring 40714 df-dveca 40960 df-disoa 40986 df-dvech 41036 df-dib 41096 df-dic 41130 df-dih 41186 df-doch 41305 df-djh 41352 df-lcdual 41544 df-mapd 41582 |
This theorem is referenced by: mapdcnvatN 41623 mapdat 41624 |
Copyright terms: Public domain | W3C validator |