Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdcv | Structured version Visualization version GIF version |
Description: Covering property of the converse of the map defined by df-mapd 39566. (Contributed by NM, 14-Mar-2015.) |
Ref | Expression |
---|---|
mapdcv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdcv.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdcv.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdcv.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
mapdcv.c | ⊢ 𝐶 = ( ⋖L ‘𝑈) |
mapdcv.d | ⊢ 𝐷 = ((LCDual‘𝐾)‘𝑊) |
mapdcv.e | ⊢ 𝐸 = ( ⋖L ‘𝐷) |
mapdcv.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdcv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
mapdcv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
mapdcv | ⊢ (𝜑 → (𝑋𝐶𝑌 ↔ (𝑀‘𝑋)𝐸(𝑀‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdcv.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdcv.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
3 | mapdcv.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | mapdcv.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑈) | |
5 | mapdcv.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | mapdcv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
7 | mapdcv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
8 | 1, 2, 3, 4, 5, 6, 7 | mapdsord 39596 | . . 3 ⊢ (𝜑 → ((𝑀‘𝑋) ⊊ (𝑀‘𝑌) ↔ 𝑋 ⊊ 𝑌)) |
9 | mapdcv.d | . . . . . . 7 ⊢ 𝐷 = ((LCDual‘𝐾)‘𝑊) | |
10 | eqid 2738 | . . . . . . 7 ⊢ (LSubSp‘𝐷) = (LSubSp‘𝐷) | |
11 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
12 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑣 ∈ 𝑆) | |
13 | 1, 2, 3, 4, 9, 10, 11, 12 | mapdcl2 39597 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → (𝑀‘𝑣) ∈ (LSubSp‘𝐷)) |
14 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
15 | 1, 2, 9, 10, 5 | mapdrn2 39592 | . . . . . . . . . 10 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘𝐷)) |
16 | 15 | eleq2d 2824 | . . . . . . . . 9 ⊢ (𝜑 → (𝑓 ∈ ran 𝑀 ↔ 𝑓 ∈ (LSubSp‘𝐷))) |
17 | 16 | biimpar 477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → 𝑓 ∈ ran 𝑀) |
18 | 1, 2, 3, 4, 14, 17 | mapdcnvcl 39593 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → (◡𝑀‘𝑓) ∈ 𝑆) |
19 | 1, 2, 14, 17 | mapdcnvid2 39598 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → (𝑀‘(◡𝑀‘𝑓)) = 𝑓) |
20 | 19 | eqcomd 2744 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → 𝑓 = (𝑀‘(◡𝑀‘𝑓))) |
21 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑣 = (◡𝑀‘𝑓) → (𝑀‘𝑣) = (𝑀‘(◡𝑀‘𝑓))) | |
22 | 21 | rspceeqv 3567 | . . . . . . 7 ⊢ (((◡𝑀‘𝑓) ∈ 𝑆 ∧ 𝑓 = (𝑀‘(◡𝑀‘𝑓))) → ∃𝑣 ∈ 𝑆 𝑓 = (𝑀‘𝑣)) |
23 | 18, 20, 22 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (LSubSp‘𝐷)) → ∃𝑣 ∈ 𝑆 𝑓 = (𝑀‘𝑣)) |
24 | psseq2 4019 | . . . . . . . 8 ⊢ (𝑓 = (𝑀‘𝑣) → ((𝑀‘𝑋) ⊊ 𝑓 ↔ (𝑀‘𝑋) ⊊ (𝑀‘𝑣))) | |
25 | psseq1 4018 | . . . . . . . 8 ⊢ (𝑓 = (𝑀‘𝑣) → (𝑓 ⊊ (𝑀‘𝑌) ↔ (𝑀‘𝑣) ⊊ (𝑀‘𝑌))) | |
26 | 24, 25 | anbi12d 630 | . . . . . . 7 ⊢ (𝑓 = (𝑀‘𝑣) → (((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)))) |
27 | 26 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 = (𝑀‘𝑣)) → (((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)))) |
28 | 13, 23, 27 | rexxfrd 5327 | . . . . 5 ⊢ (𝜑 → (∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ∃𝑣 ∈ 𝑆 ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)))) |
29 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑋 ∈ 𝑆) |
30 | 1, 2, 3, 4, 11, 29, 12 | mapdsord 39596 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ↔ 𝑋 ⊊ 𝑣)) |
31 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑌 ∈ 𝑆) |
32 | 1, 2, 3, 4, 11, 12, 31 | mapdsord 39596 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → ((𝑀‘𝑣) ⊊ (𝑀‘𝑌) ↔ 𝑣 ⊊ 𝑌)) |
33 | 30, 32 | anbi12d 630 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → (((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)) ↔ (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌))) |
34 | 33 | rexbidva 3224 | . . . . 5 ⊢ (𝜑 → (∃𝑣 ∈ 𝑆 ((𝑀‘𝑋) ⊊ (𝑀‘𝑣) ∧ (𝑀‘𝑣) ⊊ (𝑀‘𝑌)) ↔ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌))) |
35 | 28, 34 | bitrd 278 | . . . 4 ⊢ (𝜑 → (∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌))) |
36 | 35 | notbid 317 | . . 3 ⊢ (𝜑 → (¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌)) ↔ ¬ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌))) |
37 | 8, 36 | anbi12d 630 | . 2 ⊢ (𝜑 → (((𝑀‘𝑋) ⊊ (𝑀‘𝑌) ∧ ¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌))) ↔ (𝑋 ⊊ 𝑌 ∧ ¬ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌)))) |
38 | mapdcv.e | . . 3 ⊢ 𝐸 = ( ⋖L ‘𝐷) | |
39 | 1, 9, 5 | lcdlmod 39533 | . . 3 ⊢ (𝜑 → 𝐷 ∈ LMod) |
40 | 1, 2, 3, 4, 9, 10, 5, 6 | mapdcl2 39597 | . . 3 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (LSubSp‘𝐷)) |
41 | 1, 2, 3, 4, 9, 10, 5, 7 | mapdcl2 39597 | . . 3 ⊢ (𝜑 → (𝑀‘𝑌) ∈ (LSubSp‘𝐷)) |
42 | 10, 38, 39, 40, 41 | lcvbr 36962 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋)𝐸(𝑀‘𝑌) ↔ ((𝑀‘𝑋) ⊊ (𝑀‘𝑌) ∧ ¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀‘𝑋) ⊊ 𝑓 ∧ 𝑓 ⊊ (𝑀‘𝑌))))) |
43 | mapdcv.c | . . 3 ⊢ 𝐶 = ( ⋖L ‘𝑈) | |
44 | 1, 3, 5 | dvhlmod 39051 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
45 | 4, 43, 44, 6, 7 | lcvbr 36962 | . 2 ⊢ (𝜑 → (𝑋𝐶𝑌 ↔ (𝑋 ⊊ 𝑌 ∧ ¬ ∃𝑣 ∈ 𝑆 (𝑋 ⊊ 𝑣 ∧ 𝑣 ⊊ 𝑌)))) |
46 | 37, 42, 45 | 3bitr4rd 311 | 1 ⊢ (𝜑 → (𝑋𝐶𝑌 ↔ (𝑀‘𝑋)𝐸(𝑀‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊊ wpss 3884 class class class wbr 5070 ◡ccnv 5579 ran crn 5581 ‘cfv 6418 LModclmod 20038 LSubSpclss 20108 ⋖L clcv 36959 HLchlt 37291 LHypclh 37925 DVecHcdvh 39019 LCDualclcd 39527 mapdcmpd 39565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-mre 17212 df-mrc 17213 df-acs 17215 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 df-lshyp 36918 df-lcv 36960 df-lfl 36999 df-lkr 37027 df-ldual 37065 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tgrp 38684 df-tendo 38696 df-edring 38698 df-dveca 38944 df-disoa 38970 df-dvech 39020 df-dib 39080 df-dic 39114 df-dih 39170 df-doch 39289 df-djh 39336 df-lcdual 39528 df-mapd 39566 |
This theorem is referenced by: mapdcnvatN 39607 mapdat 39608 |
Copyright terms: Public domain | W3C validator |