Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdcv Structured version   Visualization version   GIF version

Theorem mapdcv 41705
Description: Covering property of the converse of the map defined by df-mapd 41670. (Contributed by NM, 14-Mar-2015.)
Hypotheses
Ref Expression
mapdcv.h 𝐻 = (LHyp‘𝐾)
mapdcv.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdcv.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdcv.s 𝑆 = (LSubSp‘𝑈)
mapdcv.c 𝐶 = ( ⋖L𝑈)
mapdcv.d 𝐷 = ((LCDual‘𝐾)‘𝑊)
mapdcv.e 𝐸 = ( ⋖L𝐷)
mapdcv.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdcv.x (𝜑𝑋𝑆)
mapdcv.y (𝜑𝑌𝑆)
Assertion
Ref Expression
mapdcv (𝜑 → (𝑋𝐶𝑌 ↔ (𝑀𝑋)𝐸(𝑀𝑌)))

Proof of Theorem mapdcv
Dummy variables 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdcv.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdcv.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdcv.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdcv.s . . . 4 𝑆 = (LSubSp‘𝑈)
5 mapdcv.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 mapdcv.x . . . 4 (𝜑𝑋𝑆)
7 mapdcv.y . . . 4 (𝜑𝑌𝑆)
81, 2, 3, 4, 5, 6, 7mapdsord 41700 . . 3 (𝜑 → ((𝑀𝑋) ⊊ (𝑀𝑌) ↔ 𝑋𝑌))
9 mapdcv.d . . . . . . 7 𝐷 = ((LCDual‘𝐾)‘𝑊)
10 eqid 2731 . . . . . . 7 (LSubSp‘𝐷) = (LSubSp‘𝐷)
115adantr 480 . . . . . . 7 ((𝜑𝑣𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simpr 484 . . . . . . 7 ((𝜑𝑣𝑆) → 𝑣𝑆)
131, 2, 3, 4, 9, 10, 11, 12mapdcl2 41701 . . . . . 6 ((𝜑𝑣𝑆) → (𝑀𝑣) ∈ (LSubSp‘𝐷))
145adantr 480 . . . . . . . 8 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
151, 2, 9, 10, 5mapdrn2 41696 . . . . . . . . . 10 (𝜑 → ran 𝑀 = (LSubSp‘𝐷))
1615eleq2d 2817 . . . . . . . . 9 (𝜑 → (𝑓 ∈ ran 𝑀𝑓 ∈ (LSubSp‘𝐷)))
1716biimpar 477 . . . . . . . 8 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → 𝑓 ∈ ran 𝑀)
181, 2, 3, 4, 14, 17mapdcnvcl 41697 . . . . . . 7 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → (𝑀𝑓) ∈ 𝑆)
191, 2, 14, 17mapdcnvid2 41702 . . . . . . . 8 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → (𝑀‘(𝑀𝑓)) = 𝑓)
2019eqcomd 2737 . . . . . . 7 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → 𝑓 = (𝑀‘(𝑀𝑓)))
21 fveq2 6822 . . . . . . . 8 (𝑣 = (𝑀𝑓) → (𝑀𝑣) = (𝑀‘(𝑀𝑓)))
2221rspceeqv 3600 . . . . . . 7 (((𝑀𝑓) ∈ 𝑆𝑓 = (𝑀‘(𝑀𝑓))) → ∃𝑣𝑆 𝑓 = (𝑀𝑣))
2318, 20, 22syl2anc 584 . . . . . 6 ((𝜑𝑓 ∈ (LSubSp‘𝐷)) → ∃𝑣𝑆 𝑓 = (𝑀𝑣))
24 psseq2 4041 . . . . . . . 8 (𝑓 = (𝑀𝑣) → ((𝑀𝑋) ⊊ 𝑓 ↔ (𝑀𝑋) ⊊ (𝑀𝑣)))
25 psseq1 4040 . . . . . . . 8 (𝑓 = (𝑀𝑣) → (𝑓 ⊊ (𝑀𝑌) ↔ (𝑀𝑣) ⊊ (𝑀𝑌)))
2624, 25anbi12d 632 . . . . . . 7 (𝑓 = (𝑀𝑣) → (((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌))))
2726adantl 481 . . . . . 6 ((𝜑𝑓 = (𝑀𝑣)) → (((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌))))
2813, 23, 27rexxfrd 5347 . . . . 5 (𝜑 → (∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ∃𝑣𝑆 ((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌))))
296adantr 480 . . . . . . . 8 ((𝜑𝑣𝑆) → 𝑋𝑆)
301, 2, 3, 4, 11, 29, 12mapdsord 41700 . . . . . . 7 ((𝜑𝑣𝑆) → ((𝑀𝑋) ⊊ (𝑀𝑣) ↔ 𝑋𝑣))
317adantr 480 . . . . . . . 8 ((𝜑𝑣𝑆) → 𝑌𝑆)
321, 2, 3, 4, 11, 12, 31mapdsord 41700 . . . . . . 7 ((𝜑𝑣𝑆) → ((𝑀𝑣) ⊊ (𝑀𝑌) ↔ 𝑣𝑌))
3330, 32anbi12d 632 . . . . . 6 ((𝜑𝑣𝑆) → (((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌)) ↔ (𝑋𝑣𝑣𝑌)))
3433rexbidva 3154 . . . . 5 (𝜑 → (∃𝑣𝑆 ((𝑀𝑋) ⊊ (𝑀𝑣) ∧ (𝑀𝑣) ⊊ (𝑀𝑌)) ↔ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌)))
3528, 34bitrd 279 . . . 4 (𝜑 → (∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌)))
3635notbid 318 . . 3 (𝜑 → (¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)) ↔ ¬ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌)))
378, 36anbi12d 632 . 2 (𝜑 → (((𝑀𝑋) ⊊ (𝑀𝑌) ∧ ¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌))) ↔ (𝑋𝑌 ∧ ¬ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌))))
38 mapdcv.e . . 3 𝐸 = ( ⋖L𝐷)
391, 9, 5lcdlmod 41637 . . 3 (𝜑𝐷 ∈ LMod)
401, 2, 3, 4, 9, 10, 5, 6mapdcl2 41701 . . 3 (𝜑 → (𝑀𝑋) ∈ (LSubSp‘𝐷))
411, 2, 3, 4, 9, 10, 5, 7mapdcl2 41701 . . 3 (𝜑 → (𝑀𝑌) ∈ (LSubSp‘𝐷))
4210, 38, 39, 40, 41lcvbr 39066 . 2 (𝜑 → ((𝑀𝑋)𝐸(𝑀𝑌) ↔ ((𝑀𝑋) ⊊ (𝑀𝑌) ∧ ¬ ∃𝑓 ∈ (LSubSp‘𝐷)((𝑀𝑋) ⊊ 𝑓𝑓 ⊊ (𝑀𝑌)))))
43 mapdcv.c . . 3 𝐶 = ( ⋖L𝑈)
441, 3, 5dvhlmod 41155 . . 3 (𝜑𝑈 ∈ LMod)
454, 43, 44, 6, 7lcvbr 39066 . 2 (𝜑 → (𝑋𝐶𝑌 ↔ (𝑋𝑌 ∧ ¬ ∃𝑣𝑆 (𝑋𝑣𝑣𝑌))))
4637, 42, 453bitr4rd 312 1 (𝜑 → (𝑋𝐶𝑌 ↔ (𝑀𝑋)𝐸(𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  wpss 3903   class class class wbr 5091  ccnv 5615  ran crn 5617  cfv 6481  LModclmod 20794  LSubSpclss 20865  L clcv 39063  HLchlt 39395  LHypclh 40029  DVecHcdvh 41123  LCDualclcd 41631  mapdcmpd 41669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19230  df-oppg 19259  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320  df-nzr 20429  df-rlreg 20610  df-domn 20611  df-drng 20647  df-lmod 20796  df-lss 20866  df-lsp 20906  df-lvec 21038  df-lsatoms 39021  df-lshyp 39022  df-lcv 39064  df-lfl 39103  df-lkr 39131  df-ldual 39169  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204  df-tgrp 40788  df-tendo 40800  df-edring 40802  df-dveca 41048  df-disoa 41074  df-dvech 41124  df-dib 41184  df-dic 41218  df-dih 41274  df-doch 41393  df-djh 41440  df-lcdual 41632  df-mapd 41670
This theorem is referenced by:  mapdcnvatN  41711  mapdat  41712
  Copyright terms: Public domain W3C validator