| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fmval 23951 | . . 3
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)))) | 
| 2 | 1 | eleq2d 2827 | . 2
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ 𝐴 ∈ (𝑋filGenran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))))) | 
| 3 |  | eqid 2737 | . . . . 5
⊢ ran
(𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) = ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) | 
| 4 | 3 | fbasrn 23892 | . . . 4
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋 ∧ 𝑋 ∈ 𝐶) → ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ∈ (fBas‘𝑋)) | 
| 5 | 4 | 3comr 1126 | . . 3
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ∈ (fBas‘𝑋)) | 
| 6 |  | elfg 23879 | . . 3
⊢ (ran
(𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))𝑦 ⊆ 𝐴))) | 
| 7 | 5, 6 | syl 17 | . 2
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))𝑦 ⊆ 𝐴))) | 
| 8 |  | simpr 484 | . . . . . 6
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | 
| 9 |  | eqid 2737 | . . . . . 6
⊢ (𝐹 “ 𝑥) = (𝐹 “ 𝑥) | 
| 10 |  | imaeq2 6074 | . . . . . . 7
⊢ (𝑡 = 𝑥 → (𝐹 “ 𝑡) = (𝐹 “ 𝑥)) | 
| 11 | 10 | rspceeqv 3645 | . . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ (𝐹 “ 𝑥) = (𝐹 “ 𝑥)) → ∃𝑡 ∈ 𝐵 (𝐹 “ 𝑥) = (𝐹 “ 𝑡)) | 
| 12 | 8, 9, 11 | sylancl 586 | . . . . 5
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → ∃𝑡 ∈ 𝐵 (𝐹 “ 𝑥) = (𝐹 “ 𝑡)) | 
| 13 |  | simpl1 1192 | . . . . . . 7
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → 𝑋 ∈ 𝐶) | 
| 14 |  | imassrn 6089 | . . . . . . . 8
⊢ (𝐹 “ 𝑥) ⊆ ran 𝐹 | 
| 15 |  | frn 6743 | . . . . . . . . . 10
⊢ (𝐹:𝑌⟶𝑋 → ran 𝐹 ⊆ 𝑋) | 
| 16 | 15 | 3ad2ant3 1136 | . . . . . . . . 9
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ran 𝐹 ⊆ 𝑋) | 
| 17 | 16 | adantr 480 | . . . . . . . 8
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → ran 𝐹 ⊆ 𝑋) | 
| 18 | 14, 17 | sstrid 3995 | . . . . . . 7
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → (𝐹 “ 𝑥) ⊆ 𝑋) | 
| 19 | 13, 18 | ssexd 5324 | . . . . . 6
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → (𝐹 “ 𝑥) ∈ V) | 
| 20 |  | eqid 2737 | . . . . . . 7
⊢ (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) = (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) | 
| 21 | 20 | elrnmpt 5969 | . . . . . 6
⊢ ((𝐹 “ 𝑥) ∈ V → ((𝐹 “ 𝑥) ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ↔ ∃𝑡 ∈ 𝐵 (𝐹 “ 𝑥) = (𝐹 “ 𝑡))) | 
| 22 | 19, 21 | syl 17 | . . . . 5
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → ((𝐹 “ 𝑥) ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ↔ ∃𝑡 ∈ 𝐵 (𝐹 “ 𝑥) = (𝐹 “ 𝑡))) | 
| 23 | 12, 22 | mpbird 257 | . . . 4
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → (𝐹 “ 𝑥) ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))) | 
| 24 | 10 | cbvmptv 5255 | . . . . . . 7
⊢ (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) = (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) | 
| 25 | 24 | elrnmpt 5969 | . . . . . 6
⊢ (𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) → (𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ↔ ∃𝑥 ∈ 𝐵 𝑦 = (𝐹 “ 𝑥))) | 
| 26 | 25 | ibi 267 | . . . . 5
⊢ (𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹 “ 𝑥)) | 
| 27 | 26 | adantl 481 | . . . 4
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹 “ 𝑥)) | 
| 28 |  | simpr 484 | . . . . 5
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 = (𝐹 “ 𝑥)) → 𝑦 = (𝐹 “ 𝑥)) | 
| 29 | 28 | sseq1d 4015 | . . . 4
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 = (𝐹 “ 𝑥)) → (𝑦 ⊆ 𝐴 ↔ (𝐹 “ 𝑥) ⊆ 𝐴)) | 
| 30 | 23, 27, 29 | rexxfrd 5409 | . . 3
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∃𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))𝑦 ⊆ 𝐴 ↔ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑥) ⊆ 𝐴)) | 
| 31 | 30 | anbi2d 630 | . 2
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))𝑦 ⊆ 𝐴) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑥) ⊆ 𝐴))) | 
| 32 | 2, 7, 31 | 3bitrd 305 | 1
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑥) ⊆ 𝐴))) |