Step | Hyp | Ref
| Expression |
1 | | fmval 22706 |
. . 3
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)))) |
2 | 1 | eleq2d 2819 |
. 2
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ 𝐴 ∈ (𝑋filGenran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))))) |
3 | | eqid 2739 |
. . . . 5
⊢ ran
(𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) = ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) |
4 | 3 | fbasrn 22647 |
. . . 4
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋 ∧ 𝑋 ∈ 𝐶) → ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ∈ (fBas‘𝑋)) |
5 | 4 | 3comr 1126 |
. . 3
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ∈ (fBas‘𝑋)) |
6 | | elfg 22634 |
. . 3
⊢ (ran
(𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))𝑦 ⊆ 𝐴))) |
7 | 5, 6 | syl 17 |
. 2
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))𝑦 ⊆ 𝐴))) |
8 | | simpr 488 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
9 | | eqid 2739 |
. . . . . 6
⊢ (𝐹 “ 𝑥) = (𝐹 “ 𝑥) |
10 | | imaeq2 5909 |
. . . . . . 7
⊢ (𝑡 = 𝑥 → (𝐹 “ 𝑡) = (𝐹 “ 𝑥)) |
11 | 10 | rspceeqv 3544 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ (𝐹 “ 𝑥) = (𝐹 “ 𝑥)) → ∃𝑡 ∈ 𝐵 (𝐹 “ 𝑥) = (𝐹 “ 𝑡)) |
12 | 8, 9, 11 | sylancl 589 |
. . . . 5
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → ∃𝑡 ∈ 𝐵 (𝐹 “ 𝑥) = (𝐹 “ 𝑡)) |
13 | | simpl1 1192 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → 𝑋 ∈ 𝐶) |
14 | | imassrn 5924 |
. . . . . . . 8
⊢ (𝐹 “ 𝑥) ⊆ ran 𝐹 |
15 | | frn 6521 |
. . . . . . . . . 10
⊢ (𝐹:𝑌⟶𝑋 → ran 𝐹 ⊆ 𝑋) |
16 | 15 | 3ad2ant3 1136 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ran 𝐹 ⊆ 𝑋) |
17 | 16 | adantr 484 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → ran 𝐹 ⊆ 𝑋) |
18 | 14, 17 | sstrid 3898 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → (𝐹 “ 𝑥) ⊆ 𝑋) |
19 | 13, 18 | ssexd 5202 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → (𝐹 “ 𝑥) ∈ V) |
20 | | eqid 2739 |
. . . . . . 7
⊢ (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) = (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) |
21 | 20 | elrnmpt 5809 |
. . . . . 6
⊢ ((𝐹 “ 𝑥) ∈ V → ((𝐹 “ 𝑥) ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ↔ ∃𝑡 ∈ 𝐵 (𝐹 “ 𝑥) = (𝐹 “ 𝑡))) |
22 | 19, 21 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → ((𝐹 “ 𝑥) ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ↔ ∃𝑡 ∈ 𝐵 (𝐹 “ 𝑥) = (𝐹 “ 𝑡))) |
23 | 12, 22 | mpbird 260 |
. . . 4
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → (𝐹 “ 𝑥) ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))) |
24 | 10 | cbvmptv 5143 |
. . . . . . 7
⊢ (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) = (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) |
25 | 24 | elrnmpt 5809 |
. . . . . 6
⊢ (𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) → (𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ↔ ∃𝑥 ∈ 𝐵 𝑦 = (𝐹 “ 𝑥))) |
26 | 25 | ibi 270 |
. . . . 5
⊢ (𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹 “ 𝑥)) |
27 | 26 | adantl 485 |
. . . 4
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹 “ 𝑥)) |
28 | | simpr 488 |
. . . . 5
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 = (𝐹 “ 𝑥)) → 𝑦 = (𝐹 “ 𝑥)) |
29 | 28 | sseq1d 3918 |
. . . 4
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 = (𝐹 “ 𝑥)) → (𝑦 ⊆ 𝐴 ↔ (𝐹 “ 𝑥) ⊆ 𝐴)) |
30 | 23, 27, 29 | rexxfrd 5286 |
. . 3
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∃𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))𝑦 ⊆ 𝐴 ↔ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑥) ⊆ 𝐴)) |
31 | 30 | anbi2d 632 |
. 2
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))𝑦 ⊆ 𝐴) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑥) ⊆ 𝐴))) |
32 | 2, 7, 31 | 3bitrd 308 |
1
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑥) ⊆ 𝐴))) |