MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm Structured version   Visualization version   GIF version

Theorem elfm 23976
Description: An element of a mapping filter. (Contributed by Jeff Hankins, 8-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
elfm ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝑋   𝑥,𝐴   𝑥,𝑌

Proof of Theorem elfm
Dummy variables 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmval 23972 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))))
21eleq2d 2830 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ 𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡)))))
3 eqid 2740 . . . . 5 ran (𝑡𝐵 ↦ (𝐹𝑡)) = ran (𝑡𝐵 ↦ (𝐹𝑡))
43fbasrn 23913 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐶) → ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋))
543comr 1125 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋))
6 elfg 23900 . . 3 (ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))) ↔ (𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴)))
75, 6syl 17 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))) ↔ (𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴)))
8 simpr 484 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → 𝑥𝐵)
9 eqid 2740 . . . . . 6 (𝐹𝑥) = (𝐹𝑥)
10 imaeq2 6085 . . . . . . 7 (𝑡 = 𝑥 → (𝐹𝑡) = (𝐹𝑥))
1110rspceeqv 3658 . . . . . 6 ((𝑥𝐵 ∧ (𝐹𝑥) = (𝐹𝑥)) → ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡))
128, 9, 11sylancl 585 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡))
13 simpl1 1191 . . . . . . 7 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → 𝑋𝐶)
14 imassrn 6100 . . . . . . . 8 (𝐹𝑥) ⊆ ran 𝐹
15 frn 6754 . . . . . . . . . 10 (𝐹:𝑌𝑋 → ran 𝐹𝑋)
16153ad2ant3 1135 . . . . . . . . 9 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran 𝐹𝑋)
1716adantr 480 . . . . . . . 8 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ran 𝐹𝑋)
1814, 17sstrid 4020 . . . . . . 7 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ⊆ 𝑋)
1913, 18ssexd 5342 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ V)
20 eqid 2740 . . . . . . 7 (𝑡𝐵 ↦ (𝐹𝑡)) = (𝑡𝐵 ↦ (𝐹𝑡))
2120elrnmpt 5981 . . . . . 6 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡)))
2219, 21syl 17 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ((𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡)))
2312, 22mpbird 257 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)))
2410cbvmptv 5279 . . . . . . 7 (𝑡𝐵 ↦ (𝐹𝑡)) = (𝑥𝐵 ↦ (𝐹𝑥))
2524elrnmpt 5981 . . . . . 6 (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) → (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
2625ibi 267 . . . . 5 (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) → ∃𝑥𝐵 𝑦 = (𝐹𝑥))
2726adantl 481 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))) → ∃𝑥𝐵 𝑦 = (𝐹𝑥))
28 simpr 484 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
2928sseq1d 4040 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 = (𝐹𝑥)) → (𝑦𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
3023, 27, 29rexxfrd 5427 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴 ↔ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴))
3130anbi2d 629 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
322, 7, 313bitrd 305 1 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  wss 3976  cmpt 5249  ran crn 5701  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  fBascfbas 21375  filGencfg 21376   FilMap cfm 23962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-fbas 21384  df-fg 21385  df-fm 23967
This theorem is referenced by:  elfm2  23977  fmfg  23978  rnelfm  23982  fmfnfmlem1  23983  fmfnfm  23987  fmco  23990  flfnei  24020  isflf  24022  isfcf  24063  filnetlem4  36347
  Copyright terms: Public domain W3C validator