| Step | Hyp | Ref
| Expression |
| 1 | | fmval 23881 |
. . 3
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)))) |
| 2 | 1 | eleq2d 2820 |
. 2
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ 𝐴 ∈ (𝑋filGenran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))))) |
| 3 | | eqid 2735 |
. . . . 5
⊢ ran
(𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) = ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) |
| 4 | 3 | fbasrn 23822 |
. . . 4
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋 ∧ 𝑋 ∈ 𝐶) → ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ∈ (fBas‘𝑋)) |
| 5 | 4 | 3comr 1125 |
. . 3
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ∈ (fBas‘𝑋)) |
| 6 | | elfg 23809 |
. . 3
⊢ (ran
(𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))𝑦 ⊆ 𝐴))) |
| 7 | 5, 6 | syl 17 |
. 2
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))𝑦 ⊆ 𝐴))) |
| 8 | | simpr 484 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 9 | | eqid 2735 |
. . . . . 6
⊢ (𝐹 “ 𝑥) = (𝐹 “ 𝑥) |
| 10 | | imaeq2 6043 |
. . . . . . 7
⊢ (𝑡 = 𝑥 → (𝐹 “ 𝑡) = (𝐹 “ 𝑥)) |
| 11 | 10 | rspceeqv 3624 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ (𝐹 “ 𝑥) = (𝐹 “ 𝑥)) → ∃𝑡 ∈ 𝐵 (𝐹 “ 𝑥) = (𝐹 “ 𝑡)) |
| 12 | 8, 9, 11 | sylancl 586 |
. . . . 5
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → ∃𝑡 ∈ 𝐵 (𝐹 “ 𝑥) = (𝐹 “ 𝑡)) |
| 13 | | simpl1 1192 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → 𝑋 ∈ 𝐶) |
| 14 | | imassrn 6058 |
. . . . . . . 8
⊢ (𝐹 “ 𝑥) ⊆ ran 𝐹 |
| 15 | | frn 6713 |
. . . . . . . . . 10
⊢ (𝐹:𝑌⟶𝑋 → ran 𝐹 ⊆ 𝑋) |
| 16 | 15 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ran 𝐹 ⊆ 𝑋) |
| 17 | 16 | adantr 480 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → ran 𝐹 ⊆ 𝑋) |
| 18 | 14, 17 | sstrid 3970 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → (𝐹 “ 𝑥) ⊆ 𝑋) |
| 19 | 13, 18 | ssexd 5294 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → (𝐹 “ 𝑥) ∈ V) |
| 20 | | eqid 2735 |
. . . . . . 7
⊢ (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) = (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) |
| 21 | 20 | elrnmpt 5938 |
. . . . . 6
⊢ ((𝐹 “ 𝑥) ∈ V → ((𝐹 “ 𝑥) ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ↔ ∃𝑡 ∈ 𝐵 (𝐹 “ 𝑥) = (𝐹 “ 𝑡))) |
| 22 | 19, 21 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → ((𝐹 “ 𝑥) ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ↔ ∃𝑡 ∈ 𝐵 (𝐹 “ 𝑥) = (𝐹 “ 𝑡))) |
| 23 | 12, 22 | mpbird 257 |
. . . 4
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑥 ∈ 𝐵) → (𝐹 “ 𝑥) ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))) |
| 24 | 10 | cbvmptv 5225 |
. . . . . . 7
⊢ (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) = (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) |
| 25 | 24 | elrnmpt 5938 |
. . . . . 6
⊢ (𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) → (𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) ↔ ∃𝑥 ∈ 𝐵 𝑦 = (𝐹 “ 𝑥))) |
| 26 | 25 | ibi 267 |
. . . . 5
⊢ (𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡)) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹 “ 𝑥)) |
| 27 | 26 | adantl 481 |
. . . 4
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹 “ 𝑥)) |
| 28 | | simpr 484 |
. . . . 5
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 = (𝐹 “ 𝑥)) → 𝑦 = (𝐹 “ 𝑥)) |
| 29 | 28 | sseq1d 3990 |
. . . 4
⊢ (((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 = (𝐹 “ 𝑥)) → (𝑦 ⊆ 𝐴 ↔ (𝐹 “ 𝑥) ⊆ 𝐴)) |
| 30 | 23, 27, 29 | rexxfrd 5379 |
. . 3
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∃𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))𝑦 ⊆ 𝐴 ↔ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑥) ⊆ 𝐴)) |
| 31 | 30 | anbi2d 630 |
. 2
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ ran (𝑡 ∈ 𝐵 ↦ (𝐹 “ 𝑡))𝑦 ⊆ 𝐴) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑥) ⊆ 𝐴))) |
| 32 | 2, 7, 31 | 3bitrd 305 |
1
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑥) ⊆ 𝐴))) |