MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm Structured version   Visualization version   GIF version

Theorem elfm 23902
Description: An element of a mapping filter. (Contributed by Jeff Hankins, 8-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
elfm ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝑋   𝑥,𝐴   𝑥,𝑌

Proof of Theorem elfm
Dummy variables 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmval 23898 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))))
21eleq2d 2819 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ 𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡)))))
3 eqid 2734 . . . . 5 ran (𝑡𝐵 ↦ (𝐹𝑡)) = ran (𝑡𝐵 ↦ (𝐹𝑡))
43fbasrn 23839 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐶) → ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋))
543comr 1125 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋))
6 elfg 23826 . . 3 (ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))) ↔ (𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴)))
75, 6syl 17 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))) ↔ (𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴)))
8 simpr 484 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → 𝑥𝐵)
9 eqid 2734 . . . . . 6 (𝐹𝑥) = (𝐹𝑥)
10 imaeq2 6054 . . . . . . 7 (𝑡 = 𝑥 → (𝐹𝑡) = (𝐹𝑥))
1110rspceeqv 3628 . . . . . 6 ((𝑥𝐵 ∧ (𝐹𝑥) = (𝐹𝑥)) → ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡))
128, 9, 11sylancl 586 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡))
13 simpl1 1191 . . . . . . 7 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → 𝑋𝐶)
14 imassrn 6069 . . . . . . . 8 (𝐹𝑥) ⊆ ran 𝐹
15 frn 6723 . . . . . . . . . 10 (𝐹:𝑌𝑋 → ran 𝐹𝑋)
16153ad2ant3 1135 . . . . . . . . 9 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran 𝐹𝑋)
1716adantr 480 . . . . . . . 8 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ran 𝐹𝑋)
1814, 17sstrid 3975 . . . . . . 7 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ⊆ 𝑋)
1913, 18ssexd 5304 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ V)
20 eqid 2734 . . . . . . 7 (𝑡𝐵 ↦ (𝐹𝑡)) = (𝑡𝐵 ↦ (𝐹𝑡))
2120elrnmpt 5949 . . . . . 6 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡)))
2219, 21syl 17 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ((𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡)))
2312, 22mpbird 257 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)))
2410cbvmptv 5235 . . . . . . 7 (𝑡𝐵 ↦ (𝐹𝑡)) = (𝑥𝐵 ↦ (𝐹𝑥))
2524elrnmpt 5949 . . . . . 6 (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) → (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
2625ibi 267 . . . . 5 (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) → ∃𝑥𝐵 𝑦 = (𝐹𝑥))
2726adantl 481 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))) → ∃𝑥𝐵 𝑦 = (𝐹𝑥))
28 simpr 484 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
2928sseq1d 3995 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 = (𝐹𝑥)) → (𝑦𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
3023, 27, 29rexxfrd 5389 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴 ↔ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴))
3130anbi2d 630 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
322, 7, 313bitrd 305 1 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  Vcvv 3463  wss 3931  cmpt 5205  ran crn 5666  cima 5668  wf 6537  cfv 6541  (class class class)co 7413  fBascfbas 21315  filGencfg 21316   FilMap cfm 23888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-fbas 21324  df-fg 21325  df-fm 23893
This theorem is referenced by:  elfm2  23903  fmfg  23904  rnelfm  23908  fmfnfmlem1  23909  fmfnfm  23913  fmco  23916  flfnei  23946  isflf  23948  isfcf  23989  filnetlem4  36357
  Copyright terms: Public domain W3C validator