MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm Structured version   Visualization version   GIF version

Theorem elfm 23862
Description: An element of a mapping filter. (Contributed by Jeff Hankins, 8-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
elfm ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝑋   𝑥,𝐴   𝑥,𝑌

Proof of Theorem elfm
Dummy variables 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmval 23858 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))))
21eleq2d 2817 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ 𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡)))))
3 eqid 2731 . . . . 5 ran (𝑡𝐵 ↦ (𝐹𝑡)) = ran (𝑡𝐵 ↦ (𝐹𝑡))
43fbasrn 23799 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐶) → ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋))
543comr 1125 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋))
6 elfg 23786 . . 3 (ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))) ↔ (𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴)))
75, 6syl 17 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))) ↔ (𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴)))
8 simpr 484 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → 𝑥𝐵)
9 eqid 2731 . . . . . 6 (𝐹𝑥) = (𝐹𝑥)
10 imaeq2 6004 . . . . . . 7 (𝑡 = 𝑥 → (𝐹𝑡) = (𝐹𝑥))
1110rspceeqv 3595 . . . . . 6 ((𝑥𝐵 ∧ (𝐹𝑥) = (𝐹𝑥)) → ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡))
128, 9, 11sylancl 586 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡))
13 simpl1 1192 . . . . . . 7 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → 𝑋𝐶)
14 imassrn 6019 . . . . . . . 8 (𝐹𝑥) ⊆ ran 𝐹
15 frn 6658 . . . . . . . . . 10 (𝐹:𝑌𝑋 → ran 𝐹𝑋)
16153ad2ant3 1135 . . . . . . . . 9 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran 𝐹𝑋)
1716adantr 480 . . . . . . . 8 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ran 𝐹𝑋)
1814, 17sstrid 3941 . . . . . . 7 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ⊆ 𝑋)
1913, 18ssexd 5260 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ V)
20 eqid 2731 . . . . . . 7 (𝑡𝐵 ↦ (𝐹𝑡)) = (𝑡𝐵 ↦ (𝐹𝑡))
2120elrnmpt 5897 . . . . . 6 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡)))
2219, 21syl 17 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ((𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡)))
2312, 22mpbird 257 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)))
2410cbvmptv 5193 . . . . . . 7 (𝑡𝐵 ↦ (𝐹𝑡)) = (𝑥𝐵 ↦ (𝐹𝑥))
2524elrnmpt 5897 . . . . . 6 (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) → (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
2625ibi 267 . . . . 5 (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) → ∃𝑥𝐵 𝑦 = (𝐹𝑥))
2726adantl 481 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))) → ∃𝑥𝐵 𝑦 = (𝐹𝑥))
28 simpr 484 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
2928sseq1d 3961 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 = (𝐹𝑥)) → (𝑦𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
3023, 27, 29rexxfrd 5345 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴 ↔ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴))
3130anbi2d 630 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
322, 7, 313bitrd 305 1 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  wss 3897  cmpt 5170  ran crn 5615  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  fBascfbas 21279  filGencfg 21280   FilMap cfm 23848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-fbas 21288  df-fg 21289  df-fm 23853
This theorem is referenced by:  elfm2  23863  fmfg  23864  rnelfm  23868  fmfnfmlem1  23869  fmfnfm  23873  fmco  23876  flfnei  23906  isflf  23908  isfcf  23949  filnetlem4  36425
  Copyright terms: Public domain W3C validator