MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm Structured version   Visualization version   GIF version

Theorem elfm 23451
Description: An element of a mapping filter. (Contributed by Jeff Hankins, 8-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
elfm ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝑋   𝑥,𝐴   𝑥,𝑌

Proof of Theorem elfm
Dummy variables 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmval 23447 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))))
21eleq2d 2820 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ 𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡)))))
3 eqid 2733 . . . . 5 ran (𝑡𝐵 ↦ (𝐹𝑡)) = ran (𝑡𝐵 ↦ (𝐹𝑡))
43fbasrn 23388 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐶) → ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋))
543comr 1126 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋))
6 elfg 23375 . . 3 (ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))) ↔ (𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴)))
75, 6syl 17 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))) ↔ (𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴)))
8 simpr 486 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → 𝑥𝐵)
9 eqid 2733 . . . . . 6 (𝐹𝑥) = (𝐹𝑥)
10 imaeq2 6056 . . . . . . 7 (𝑡 = 𝑥 → (𝐹𝑡) = (𝐹𝑥))
1110rspceeqv 3634 . . . . . 6 ((𝑥𝐵 ∧ (𝐹𝑥) = (𝐹𝑥)) → ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡))
128, 9, 11sylancl 587 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡))
13 simpl1 1192 . . . . . . 7 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → 𝑋𝐶)
14 imassrn 6071 . . . . . . . 8 (𝐹𝑥) ⊆ ran 𝐹
15 frn 6725 . . . . . . . . . 10 (𝐹:𝑌𝑋 → ran 𝐹𝑋)
16153ad2ant3 1136 . . . . . . . . 9 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran 𝐹𝑋)
1716adantr 482 . . . . . . . 8 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ran 𝐹𝑋)
1814, 17sstrid 3994 . . . . . . 7 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ⊆ 𝑋)
1913, 18ssexd 5325 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ V)
20 eqid 2733 . . . . . . 7 (𝑡𝐵 ↦ (𝐹𝑡)) = (𝑡𝐵 ↦ (𝐹𝑡))
2120elrnmpt 5956 . . . . . 6 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡)))
2219, 21syl 17 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ((𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡)))
2312, 22mpbird 257 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)))
2410cbvmptv 5262 . . . . . . 7 (𝑡𝐵 ↦ (𝐹𝑡)) = (𝑥𝐵 ↦ (𝐹𝑥))
2524elrnmpt 5956 . . . . . 6 (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) → (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
2625ibi 267 . . . . 5 (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) → ∃𝑥𝐵 𝑦 = (𝐹𝑥))
2726adantl 483 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))) → ∃𝑥𝐵 𝑦 = (𝐹𝑥))
28 simpr 486 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
2928sseq1d 4014 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 = (𝐹𝑥)) → (𝑦𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
3023, 27, 29rexxfrd 5408 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴 ↔ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴))
3130anbi2d 630 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
322, 7, 313bitrd 305 1 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wrex 3071  Vcvv 3475  wss 3949  cmpt 5232  ran crn 5678  cima 5680  wf 6540  cfv 6544  (class class class)co 7409  fBascfbas 20932  filGencfg 20933   FilMap cfm 23437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-fbas 20941  df-fg 20942  df-fm 23442
This theorem is referenced by:  elfm2  23452  fmfg  23453  rnelfm  23457  fmfnfmlem1  23458  fmfnfm  23462  fmco  23465  flfnei  23495  isflf  23497  isfcf  23538  filnetlem4  35266
  Copyright terms: Public domain W3C validator