MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm Structured version   Visualization version   GIF version

Theorem elfm 23006
Description: An element of a mapping filter. (Contributed by Jeff Hankins, 8-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
elfm ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝑋   𝑥,𝐴   𝑥,𝑌

Proof of Theorem elfm
Dummy variables 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmval 23002 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))))
21eleq2d 2824 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ 𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡)))))
3 eqid 2738 . . . . 5 ran (𝑡𝐵 ↦ (𝐹𝑡)) = ran (𝑡𝐵 ↦ (𝐹𝑡))
43fbasrn 22943 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐶) → ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋))
543comr 1123 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋))
6 elfg 22930 . . 3 (ran (𝑡𝐵 ↦ (𝐹𝑡)) ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))) ↔ (𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴)))
75, 6syl 17 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ (𝑋filGenran (𝑡𝐵 ↦ (𝐹𝑡))) ↔ (𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴)))
8 simpr 484 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → 𝑥𝐵)
9 eqid 2738 . . . . . 6 (𝐹𝑥) = (𝐹𝑥)
10 imaeq2 5954 . . . . . . 7 (𝑡 = 𝑥 → (𝐹𝑡) = (𝐹𝑥))
1110rspceeqv 3567 . . . . . 6 ((𝑥𝐵 ∧ (𝐹𝑥) = (𝐹𝑥)) → ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡))
128, 9, 11sylancl 585 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡))
13 simpl1 1189 . . . . . . 7 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → 𝑋𝐶)
14 imassrn 5969 . . . . . . . 8 (𝐹𝑥) ⊆ ran 𝐹
15 frn 6591 . . . . . . . . . 10 (𝐹:𝑌𝑋 → ran 𝐹𝑋)
16153ad2ant3 1133 . . . . . . . . 9 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran 𝐹𝑋)
1716adantr 480 . . . . . . . 8 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ran 𝐹𝑋)
1814, 17sstrid 3928 . . . . . . 7 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ⊆ 𝑋)
1913, 18ssexd 5243 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ V)
20 eqid 2738 . . . . . . 7 (𝑡𝐵 ↦ (𝐹𝑡)) = (𝑡𝐵 ↦ (𝐹𝑡))
2120elrnmpt 5854 . . . . . 6 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡)))
2219, 21syl 17 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → ((𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑡𝐵 (𝐹𝑥) = (𝐹𝑡)))
2312, 22mpbird 256 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)))
2410cbvmptv 5183 . . . . . . 7 (𝑡𝐵 ↦ (𝐹𝑡)) = (𝑥𝐵 ↦ (𝐹𝑥))
2524elrnmpt 5854 . . . . . 6 (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) → (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) ↔ ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
2625ibi 266 . . . . 5 (𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡)) → ∃𝑥𝐵 𝑦 = (𝐹𝑥))
2726adantl 481 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))) → ∃𝑥𝐵 𝑦 = (𝐹𝑥))
28 simpr 484 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
2928sseq1d 3948 . . . 4 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦 = (𝐹𝑥)) → (𝑦𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
3023, 27, 29rexxfrd 5327 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴 ↔ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴))
3130anbi2d 628 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∃𝑦 ∈ ran (𝑡𝐵 ↦ (𝐹𝑡))𝑦𝐴) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
322, 7, 313bitrd 304 1 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐵 (𝐹𝑥) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  wss 3883  cmpt 5153  ran crn 5581  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  fBascfbas 20498  filGencfg 20499   FilMap cfm 22992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-fbas 20507  df-fg 20508  df-fm 22997
This theorem is referenced by:  elfm2  23007  fmfg  23008  rnelfm  23012  fmfnfmlem1  23013  fmfnfm  23017  fmco  23020  flfnei  23050  isflf  23052  isfcf  23093  filnetlem4  34497
  Copyright terms: Public domain W3C validator