Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrdx Structured version   Visualization version   GIF version

Theorem iunrdx 30903
Description: Re-index an indexed union. (Contributed by Thierry Arnoux, 6-Apr-2017.)
Hypotheses
Ref Expression
iunrdx.1 (𝜑𝐹:𝐴onto𝐶)
iunrdx.2 ((𝜑𝑦 = (𝐹𝑥)) → 𝐷 = 𝐵)
Assertion
Ref Expression
iunrdx (𝜑 𝑥𝐴 𝐵 = 𝑦𝐶 𝐷)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑦)

Proof of Theorem iunrdx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iunrdx.1 . . . . . . 7 (𝜑𝐹:𝐴onto𝐶)
2 fof 6688 . . . . . . 7 (𝐹:𝐴onto𝐶𝐹:𝐴𝐶)
31, 2syl 17 . . . . . 6 (𝜑𝐹:𝐴𝐶)
43ffvelrnda 6961 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐶)
5 foelrn 6982 . . . . . 6 ((𝐹:𝐴onto𝐶𝑦𝐶) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
61, 5sylan 580 . . . . 5 ((𝜑𝑦𝐶) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
7 iunrdx.2 . . . . . 6 ((𝜑𝑦 = (𝐹𝑥)) → 𝐷 = 𝐵)
87eleq2d 2824 . . . . 5 ((𝜑𝑦 = (𝐹𝑥)) → (𝑧𝐷𝑧𝐵))
94, 6, 8rexxfrd 5332 . . . 4 (𝜑 → (∃𝑦𝐶 𝑧𝐷 ↔ ∃𝑥𝐴 𝑧𝐵))
109bicomd 222 . . 3 (𝜑 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦𝐶 𝑧𝐷))
1110abbidv 2807 . 2 (𝜑 → {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} = {𝑧 ∣ ∃𝑦𝐶 𝑧𝐷})
12 df-iun 4926 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
13 df-iun 4926 . 2 𝑦𝐶 𝐷 = {𝑧 ∣ ∃𝑦𝐶 𝑧𝐷}
1411, 12, 133eqtr4g 2803 1 (𝜑 𝑥𝐴 𝐵 = 𝑦𝐶 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wrex 3065   ciun 4924  wf 6429  ontowfo 6431  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441
This theorem is referenced by:  volmeas  32199
  Copyright terms: Public domain W3C validator