Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrdx Structured version   Visualization version   GIF version

Theorem iunrdx 30804
Description: Re-index an indexed union. (Contributed by Thierry Arnoux, 6-Apr-2017.)
Hypotheses
Ref Expression
iunrdx.1 (𝜑𝐹:𝐴onto𝐶)
iunrdx.2 ((𝜑𝑦 = (𝐹𝑥)) → 𝐷 = 𝐵)
Assertion
Ref Expression
iunrdx (𝜑 𝑥𝐴 𝐵 = 𝑦𝐶 𝐷)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑦)

Proof of Theorem iunrdx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iunrdx.1 . . . . . . 7 (𝜑𝐹:𝐴onto𝐶)
2 fof 6672 . . . . . . 7 (𝐹:𝐴onto𝐶𝐹:𝐴𝐶)
31, 2syl 17 . . . . . 6 (𝜑𝐹:𝐴𝐶)
43ffvelrnda 6943 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐶)
5 foelrn 6964 . . . . . 6 ((𝐹:𝐴onto𝐶𝑦𝐶) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
61, 5sylan 579 . . . . 5 ((𝜑𝑦𝐶) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
7 iunrdx.2 . . . . . 6 ((𝜑𝑦 = (𝐹𝑥)) → 𝐷 = 𝐵)
87eleq2d 2824 . . . . 5 ((𝜑𝑦 = (𝐹𝑥)) → (𝑧𝐷𝑧𝐵))
94, 6, 8rexxfrd 5327 . . . 4 (𝜑 → (∃𝑦𝐶 𝑧𝐷 ↔ ∃𝑥𝐴 𝑧𝐵))
109bicomd 222 . . 3 (𝜑 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦𝐶 𝑧𝐷))
1110abbidv 2808 . 2 (𝜑 → {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} = {𝑧 ∣ ∃𝑦𝐶 𝑧𝐷})
12 df-iun 4923 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
13 df-iun 4923 . 2 𝑦𝐶 𝐷 = {𝑧 ∣ ∃𝑦𝐶 𝑧𝐷}
1411, 12, 133eqtr4g 2804 1 (𝜑 𝑥𝐴 𝐵 = 𝑦𝐶 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064   ciun 4921  wf 6414  ontowfo 6416  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426
This theorem is referenced by:  volmeas  32099
  Copyright terms: Public domain W3C validator