![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunrdx | Structured version Visualization version GIF version |
Description: Re-index an indexed union. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
Ref | Expression |
---|---|
iunrdx.1 | ⊢ (𝜑 → 𝐹:𝐴–onto→𝐶) |
iunrdx.2 | ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
iunrdx | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunrdx.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴–onto→𝐶) | |
2 | fof 6834 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐶 → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
4 | 3 | ffvelcdmda 7118 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐶) |
5 | foelrn 7141 | . . . . . 6 ⊢ ((𝐹:𝐴–onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) | |
6 | 1, 5 | sylan 579 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
7 | iunrdx.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) | |
8 | 7 | eleq2d 2830 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐵)) |
9 | 4, 6, 8 | rexxfrd 5427 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵)) |
10 | 9 | bicomd 223 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
11 | 10 | abbidv 2811 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷}) |
12 | df-iun 5017 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
13 | df-iun 5017 | . 2 ⊢ ∪ 𝑦 ∈ 𝐶 𝐷 = {𝑧 ∣ ∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷} | |
14 | 11, 12, 13 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 ∪ ciun 5015 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 |
This theorem is referenced by: volmeas 34195 |
Copyright terms: Public domain | W3C validator |