Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunrdx | Structured version Visualization version GIF version |
Description: Re-index an indexed union. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
Ref | Expression |
---|---|
iunrdx.1 | ⊢ (𝜑 → 𝐹:𝐴–onto→𝐶) |
iunrdx.2 | ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
iunrdx | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunrdx.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴–onto→𝐶) | |
2 | fof 6672 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐶 → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
4 | 3 | ffvelrnda 6943 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐶) |
5 | foelrn 6964 | . . . . . 6 ⊢ ((𝐹:𝐴–onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) | |
6 | 1, 5 | sylan 579 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
7 | iunrdx.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) | |
8 | 7 | eleq2d 2824 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐵)) |
9 | 4, 6, 8 | rexxfrd 5327 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵)) |
10 | 9 | bicomd 222 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
11 | 10 | abbidv 2808 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷}) |
12 | df-iun 4923 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
13 | df-iun 4923 | . 2 ⊢ ∪ 𝑦 ∈ 𝐶 𝐷 = {𝑧 ∣ ∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷} | |
14 | 11, 12, 13 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 ∪ ciun 4921 ⟶wf 6414 –onto→wfo 6416 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 |
This theorem is referenced by: volmeas 32099 |
Copyright terms: Public domain | W3C validator |