![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucf1lem | Structured version Visualization version GIF version |
Description: For ordinals, the successor operation is injective, so there is at most one ordinal that a given ordinal could be the succesor of. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
Ref | Expression |
---|---|
onsucf1lem | ⊢ (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onuni 7769 | . . 3 ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) | |
2 | onsucuni2 7815 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝑏) → suc ∪ 𝐴 = 𝐴) | |
3 | 2 | adantlr 712 | . . . . . . 7 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → suc ∪ 𝐴 = 𝐴) |
4 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → 𝐴 = suc 𝑏) | |
5 | 3, 4 | eqtr2d 2765 | . . . . . 6 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → suc 𝑏 = suc ∪ 𝐴) |
6 | 1 | anim1i 614 | . . . . . . . . 9 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ On) → (∪ 𝐴 ∈ On ∧ 𝑏 ∈ On)) |
7 | 6 | adantr 480 | . . . . . . . 8 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → (∪ 𝐴 ∈ On ∧ 𝑏 ∈ On)) |
8 | 7 | ancomd 461 | . . . . . . 7 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → (𝑏 ∈ On ∧ ∪ 𝐴 ∈ On)) |
9 | suc11 6461 | . . . . . . 7 ⊢ ((𝑏 ∈ On ∧ ∪ 𝐴 ∈ On) → (suc 𝑏 = suc ∪ 𝐴 ↔ 𝑏 = ∪ 𝐴)) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → (suc 𝑏 = suc ∪ 𝐴 ↔ 𝑏 = ∪ 𝐴)) |
11 | 5, 10 | mpbid 231 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → 𝑏 = ∪ 𝐴) |
12 | 11 | ex 412 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ On) → (𝐴 = suc 𝑏 → 𝑏 = ∪ 𝐴)) |
13 | 12 | ralrimiva 3138 | . . 3 ⊢ (𝐴 ∈ On → ∀𝑏 ∈ On (𝐴 = suc 𝑏 → 𝑏 = ∪ 𝐴)) |
14 | eqeq2 2736 | . . . . 5 ⊢ (𝑐 = ∪ 𝐴 → (𝑏 = 𝑐 ↔ 𝑏 = ∪ 𝐴)) | |
15 | 14 | imbi2d 340 | . . . 4 ⊢ (𝑐 = ∪ 𝐴 → ((𝐴 = suc 𝑏 → 𝑏 = 𝑐) ↔ (𝐴 = suc 𝑏 → 𝑏 = ∪ 𝐴))) |
16 | 15 | ralbidv 3169 | . . 3 ⊢ (𝑐 = ∪ 𝐴 → (∀𝑏 ∈ On (𝐴 = suc 𝑏 → 𝑏 = 𝑐) ↔ ∀𝑏 ∈ On (𝐴 = suc 𝑏 → 𝑏 = ∪ 𝐴))) |
17 | 1, 13, 16 | spcedv 3580 | . 2 ⊢ (𝐴 ∈ On → ∃𝑐∀𝑏 ∈ On (𝐴 = suc 𝑏 → 𝑏 = 𝑐)) |
18 | nfv 1909 | . . 3 ⊢ Ⅎ𝑐 𝐴 = suc 𝑏 | |
19 | 18 | rmo2 3873 | . 2 ⊢ (∃*𝑏 ∈ On 𝐴 = suc 𝑏 ↔ ∃𝑐∀𝑏 ∈ On (𝐴 = suc 𝑏 → 𝑏 = 𝑐)) |
20 | 17, 19 | sylibr 233 | 1 ⊢ (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∀wral 3053 ∃*wrmo 3367 ∪ cuni 4899 Oncon0 6354 suc csuc 6356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-tr 5256 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-ord 6357 df-on 6358 df-suc 6360 |
This theorem is referenced by: onsucf1olem 42509 |
Copyright terms: Public domain | W3C validator |