Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucf1lem Structured version   Visualization version   GIF version

Theorem onsucf1lem 42508
Description: For ordinals, the successor operation is injective, so there is at most one ordinal that a given ordinal could be the succesor of. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.)
Assertion
Ref Expression
onsucf1lem (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏)
Distinct variable group:   𝐴,𝑏

Proof of Theorem onsucf1lem
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 onuni 7769 . . 3 (𝐴 ∈ On → 𝐴 ∈ On)
2 onsucuni2 7815 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐴 = suc 𝑏) → suc 𝐴 = 𝐴)
32adantlr 712 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → suc 𝐴 = 𝐴)
4 simpr 484 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → 𝐴 = suc 𝑏)
53, 4eqtr2d 2765 . . . . . 6 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → suc 𝑏 = suc 𝐴)
61anim1i 614 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑏 ∈ On) → ( 𝐴 ∈ On ∧ 𝑏 ∈ On))
76adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → ( 𝐴 ∈ On ∧ 𝑏 ∈ On))
87ancomd 461 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → (𝑏 ∈ On ∧ 𝐴 ∈ On))
9 suc11 6461 . . . . . . 7 ((𝑏 ∈ On ∧ 𝐴 ∈ On) → (suc 𝑏 = suc 𝐴𝑏 = 𝐴))
108, 9syl 17 . . . . . 6 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → (suc 𝑏 = suc 𝐴𝑏 = 𝐴))
115, 10mpbid 231 . . . . 5 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → 𝑏 = 𝐴)
1211ex 412 . . . 4 ((𝐴 ∈ On ∧ 𝑏 ∈ On) → (𝐴 = suc 𝑏𝑏 = 𝐴))
1312ralrimiva 3138 . . 3 (𝐴 ∈ On → ∀𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝐴))
14 eqeq2 2736 . . . . 5 (𝑐 = 𝐴 → (𝑏 = 𝑐𝑏 = 𝐴))
1514imbi2d 340 . . . 4 (𝑐 = 𝐴 → ((𝐴 = suc 𝑏𝑏 = 𝑐) ↔ (𝐴 = suc 𝑏𝑏 = 𝐴)))
1615ralbidv 3169 . . 3 (𝑐 = 𝐴 → (∀𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝑐) ↔ ∀𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝐴)))
171, 13, 16spcedv 3580 . 2 (𝐴 ∈ On → ∃𝑐𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝑐))
18 nfv 1909 . . 3 𝑐 𝐴 = suc 𝑏
1918rmo2 3873 . 2 (∃*𝑏 ∈ On 𝐴 = suc 𝑏 ↔ ∃𝑐𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝑐))
2017, 19sylibr 233 1 (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wex 1773  wcel 2098  wral 3053  ∃*wrmo 3367   cuni 4899  Oncon0 6354  suc csuc 6356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-tr 5256  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-ord 6357  df-on 6358  df-suc 6360
This theorem is referenced by:  onsucf1olem  42509
  Copyright terms: Public domain W3C validator