Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucf1lem Structured version   Visualization version   GIF version

Theorem onsucf1lem 43231
Description: For ordinals, the successor operation is injective, so there is at most one ordinal that a given ordinal could be the successor of. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.)
Assertion
Ref Expression
onsucf1lem (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏)
Distinct variable group:   𝐴,𝑏

Proof of Theorem onsucf1lem
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 onuni 7824 . . 3 (𝐴 ∈ On → 𝐴 ∈ On)
2 onsucuni2 7870 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐴 = suc 𝑏) → suc 𝐴 = 𝐴)
32adantlr 714 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → suc 𝐴 = 𝐴)
4 simpr 484 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → 𝐴 = suc 𝑏)
53, 4eqtr2d 2781 . . . . . 6 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → suc 𝑏 = suc 𝐴)
61anim1i 614 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑏 ∈ On) → ( 𝐴 ∈ On ∧ 𝑏 ∈ On))
76adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → ( 𝐴 ∈ On ∧ 𝑏 ∈ On))
87ancomd 461 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → (𝑏 ∈ On ∧ 𝐴 ∈ On))
9 suc11 6502 . . . . . . 7 ((𝑏 ∈ On ∧ 𝐴 ∈ On) → (suc 𝑏 = suc 𝐴𝑏 = 𝐴))
108, 9syl 17 . . . . . 6 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → (suc 𝑏 = suc 𝐴𝑏 = 𝐴))
115, 10mpbid 232 . . . . 5 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → 𝑏 = 𝐴)
1211ex 412 . . . 4 ((𝐴 ∈ On ∧ 𝑏 ∈ On) → (𝐴 = suc 𝑏𝑏 = 𝐴))
1312ralrimiva 3152 . . 3 (𝐴 ∈ On → ∀𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝐴))
14 eqeq2 2752 . . . . 5 (𝑐 = 𝐴 → (𝑏 = 𝑐𝑏 = 𝐴))
1514imbi2d 340 . . . 4 (𝑐 = 𝐴 → ((𝐴 = suc 𝑏𝑏 = 𝑐) ↔ (𝐴 = suc 𝑏𝑏 = 𝐴)))
1615ralbidv 3184 . . 3 (𝑐 = 𝐴 → (∀𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝑐) ↔ ∀𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝐴)))
171, 13, 16spcedv 3611 . 2 (𝐴 ∈ On → ∃𝑐𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝑐))
18 nfv 1913 . . 3 𝑐 𝐴 = suc 𝑏
1918rmo2 3909 . 2 (∃*𝑏 ∈ On 𝐴 = suc 𝑏 ↔ ∃𝑐𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝑐))
2017, 19sylibr 234 1 (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  ∃*wrmo 3387   cuni 4931  Oncon0 6395  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by:  onsucf1olem  43232
  Copyright terms: Public domain W3C validator