| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucf1lem | Structured version Visualization version GIF version | ||
| Description: For ordinals, the successor operation is injective, so there is at most one ordinal that a given ordinal could be the successor of. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsucf1lem | ⊢ (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onuni 7808 | . . 3 ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) | |
| 2 | onsucuni2 7854 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝑏) → suc ∪ 𝐴 = 𝐴) | |
| 3 | 2 | adantlr 715 | . . . . . . 7 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → suc ∪ 𝐴 = 𝐴) |
| 4 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → 𝐴 = suc 𝑏) | |
| 5 | 3, 4 | eqtr2d 2778 | . . . . . 6 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → suc 𝑏 = suc ∪ 𝐴) |
| 6 | 1 | anim1i 615 | . . . . . . . . 9 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ On) → (∪ 𝐴 ∈ On ∧ 𝑏 ∈ On)) |
| 7 | 6 | adantr 480 | . . . . . . . 8 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → (∪ 𝐴 ∈ On ∧ 𝑏 ∈ On)) |
| 8 | 7 | ancomd 461 | . . . . . . 7 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → (𝑏 ∈ On ∧ ∪ 𝐴 ∈ On)) |
| 9 | suc11 6491 | . . . . . . 7 ⊢ ((𝑏 ∈ On ∧ ∪ 𝐴 ∈ On) → (suc 𝑏 = suc ∪ 𝐴 ↔ 𝑏 = ∪ 𝐴)) | |
| 10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → (suc 𝑏 = suc ∪ 𝐴 ↔ 𝑏 = ∪ 𝐴)) |
| 11 | 5, 10 | mpbid 232 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → 𝑏 = ∪ 𝐴) |
| 12 | 11 | ex 412 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ On) → (𝐴 = suc 𝑏 → 𝑏 = ∪ 𝐴)) |
| 13 | 12 | ralrimiva 3146 | . . 3 ⊢ (𝐴 ∈ On → ∀𝑏 ∈ On (𝐴 = suc 𝑏 → 𝑏 = ∪ 𝐴)) |
| 14 | eqeq2 2749 | . . . . 5 ⊢ (𝑐 = ∪ 𝐴 → (𝑏 = 𝑐 ↔ 𝑏 = ∪ 𝐴)) | |
| 15 | 14 | imbi2d 340 | . . . 4 ⊢ (𝑐 = ∪ 𝐴 → ((𝐴 = suc 𝑏 → 𝑏 = 𝑐) ↔ (𝐴 = suc 𝑏 → 𝑏 = ∪ 𝐴))) |
| 16 | 15 | ralbidv 3178 | . . 3 ⊢ (𝑐 = ∪ 𝐴 → (∀𝑏 ∈ On (𝐴 = suc 𝑏 → 𝑏 = 𝑐) ↔ ∀𝑏 ∈ On (𝐴 = suc 𝑏 → 𝑏 = ∪ 𝐴))) |
| 17 | 1, 13, 16 | spcedv 3598 | . 2 ⊢ (𝐴 ∈ On → ∃𝑐∀𝑏 ∈ On (𝐴 = suc 𝑏 → 𝑏 = 𝑐)) |
| 18 | nfv 1914 | . . 3 ⊢ Ⅎ𝑐 𝐴 = suc 𝑏 | |
| 19 | 18 | rmo2 3887 | . 2 ⊢ (∃*𝑏 ∈ On 𝐴 = suc 𝑏 ↔ ∃𝑐∀𝑏 ∈ On (𝐴 = suc 𝑏 → 𝑏 = 𝑐)) |
| 20 | 17, 19 | sylibr 234 | 1 ⊢ (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3061 ∃*wrmo 3379 ∪ cuni 4907 Oncon0 6384 suc csuc 6386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-suc 6390 |
| This theorem is referenced by: onsucf1olem 43283 |
| Copyright terms: Public domain | W3C validator |