Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucf1lem Structured version   Visualization version   GIF version

Theorem onsucf1lem 41952
Description: For ordinals, the successor operation is injective, so there is at most one ordinal that a given ordinal could be the succesor of. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.)
Assertion
Ref Expression
onsucf1lem (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏)
Distinct variable group:   𝐴,𝑏

Proof of Theorem onsucf1lem
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 onuni 7771 . . 3 (𝐴 ∈ On → 𝐴 ∈ On)
2 onsucuni2 7817 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐴 = suc 𝑏) → suc 𝐴 = 𝐴)
32adantlr 714 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → suc 𝐴 = 𝐴)
4 simpr 486 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → 𝐴 = suc 𝑏)
53, 4eqtr2d 2774 . . . . . 6 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → suc 𝑏 = suc 𝐴)
61anim1i 616 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑏 ∈ On) → ( 𝐴 ∈ On ∧ 𝑏 ∈ On))
76adantr 482 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → ( 𝐴 ∈ On ∧ 𝑏 ∈ On))
87ancomd 463 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → (𝑏 ∈ On ∧ 𝐴 ∈ On))
9 suc11 6468 . . . . . . 7 ((𝑏 ∈ On ∧ 𝐴 ∈ On) → (suc 𝑏 = suc 𝐴𝑏 = 𝐴))
108, 9syl 17 . . . . . 6 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → (suc 𝑏 = suc 𝐴𝑏 = 𝐴))
115, 10mpbid 231 . . . . 5 (((𝐴 ∈ On ∧ 𝑏 ∈ On) ∧ 𝐴 = suc 𝑏) → 𝑏 = 𝐴)
1211ex 414 . . . 4 ((𝐴 ∈ On ∧ 𝑏 ∈ On) → (𝐴 = suc 𝑏𝑏 = 𝐴))
1312ralrimiva 3147 . . 3 (𝐴 ∈ On → ∀𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝐴))
14 eqeq2 2745 . . . . 5 (𝑐 = 𝐴 → (𝑏 = 𝑐𝑏 = 𝐴))
1514imbi2d 341 . . . 4 (𝑐 = 𝐴 → ((𝐴 = suc 𝑏𝑏 = 𝑐) ↔ (𝐴 = suc 𝑏𝑏 = 𝐴)))
1615ralbidv 3178 . . 3 (𝑐 = 𝐴 → (∀𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝑐) ↔ ∀𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝐴)))
171, 13, 16spcedv 3588 . 2 (𝐴 ∈ On → ∃𝑐𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝑐))
18 nfv 1918 . . 3 𝑐 𝐴 = suc 𝑏
1918rmo2 3880 . 2 (∃*𝑏 ∈ On 𝐴 = suc 𝑏 ↔ ∃𝑐𝑏 ∈ On (𝐴 = suc 𝑏𝑏 = 𝑐))
2017, 19sylibr 233 1 (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wral 3062  ∃*wrmo 3376   cuni 4907  Oncon0 6361  suc csuc 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-suc 6367
This theorem is referenced by:  onsucf1olem  41953
  Copyright terms: Public domain W3C validator