MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred2 Structured version   Visualization version   GIF version

Theorem efgred2 19771
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgred2 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) (𝑆𝐵) ↔ (𝐴‘0) = (𝐵‘0)))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgred2
Dummy variables 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . . . . 8 = ( ~FG𝐼)
3 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . . . . 8 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . . . 8 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . . . 8 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsfo 19757 . . . . . . 7 𝑆:dom 𝑆onto𝑊
8 fof 6820 . . . . . . 7 (𝑆:dom 𝑆onto𝑊𝑆:dom 𝑆𝑊)
97, 8ax-mp 5 . . . . . 6 𝑆:dom 𝑆𝑊
109ffvelcdmi 7103 . . . . 5 (𝐵 ∈ dom 𝑆 → (𝑆𝐵) ∈ 𝑊)
1110ad2antlr 727 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝑆𝐵) ∈ 𝑊)
121, 2, 3, 4, 5, 6efgredeu 19770 . . . 4 ((𝑆𝐵) ∈ 𝑊 → ∃!𝑑𝐷 𝑑 (𝑆𝐵))
13 reurmo 3383 . . . 4 (∃!𝑑𝐷 𝑑 (𝑆𝐵) → ∃*𝑑𝐷 𝑑 (𝑆𝐵))
1411, 12, 133syl 18 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → ∃*𝑑𝐷 𝑑 (𝑆𝐵))
151, 2, 3, 4, 5, 6efgsdm 19748 . . . . 5 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1)))))
1615simp2bi 1147 . . . 4 (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷)
1716ad2antrr 726 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) ∈ 𝐷)
181, 2efger 19736 . . . . 5 Er 𝑊
1918a1i 11 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → Er 𝑊)
201, 2, 3, 4, 5, 6efgsrel 19752 . . . . 5 (𝐴 ∈ dom 𝑆 → (𝐴‘0) (𝑆𝐴))
2120ad2antrr 726 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) (𝑆𝐴))
22 simpr 484 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝑆𝐴) (𝑆𝐵))
2319, 21, 22ertrd 8761 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) (𝑆𝐵))
241, 2, 3, 4, 5, 6efgsdm 19748 . . . . 5 (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1)))))
2524simp2bi 1147 . . . 4 (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∈ 𝐷)
2625ad2antlr 727 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐵‘0) ∈ 𝐷)
271, 2, 3, 4, 5, 6efgsrel 19752 . . . 4 (𝐵 ∈ dom 𝑆 → (𝐵‘0) (𝑆𝐵))
2827ad2antlr 727 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐵‘0) (𝑆𝐵))
29 breq1 5146 . . . 4 (𝑑 = (𝐴‘0) → (𝑑 (𝑆𝐵) ↔ (𝐴‘0) (𝑆𝐵)))
30 breq1 5146 . . . 4 (𝑑 = (𝐵‘0) → (𝑑 (𝑆𝐵) ↔ (𝐵‘0) (𝑆𝐵)))
3129, 30rmoi 3891 . . 3 ((∃*𝑑𝐷 𝑑 (𝑆𝐵) ∧ ((𝐴‘0) ∈ 𝐷 ∧ (𝐴‘0) (𝑆𝐵)) ∧ ((𝐵‘0) ∈ 𝐷 ∧ (𝐵‘0) (𝑆𝐵))) → (𝐴‘0) = (𝐵‘0))
3214, 17, 23, 26, 28, 31syl122anc 1381 . 2 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
3318a1i 11 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → Er 𝑊)
3420ad2antrr 726 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) (𝑆𝐴))
35 simpr 484 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = (𝐵‘0))
3627ad2antlr 727 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐵‘0) (𝑆𝐵))
3735, 36eqbrtrd 5165 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) (𝑆𝐵))
3833, 34, 37ertr3d 8763 . 2 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑆𝐴) (𝑆𝐵))
3932, 38impbida 801 1 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) (𝑆𝐵) ↔ (𝐴‘0) = (𝐵‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  ∃!wreu 3378  ∃*wrmo 3379  {crab 3436  cdif 3948  c0 4333  {csn 4626  cop 4632  cotp 4634   ciun 4991   class class class wbr 5143  cmpt 5225   I cid 5577   × cxp 5683  dom cdm 5685  ran crn 5686  wf 6557  ontowfo 6559  cfv 6561  (class class class)co 7431  cmpo 7433  1oc1o 8499  2oc2o 8500   Er wer 8742  0cc0 11155  1c1 11156  cmin 11492  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552   splice csplice 14787  ⟨“cs2 14880   ~FG cefg 19724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-ec 8747  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-splice 14788  df-s2 14887  df-efg 19727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator