| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgred2 | Structured version Visualization version GIF version | ||
| Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| Ref | Expression |
|---|---|
| efgred2 | ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) → ((𝑆‘𝐴) ∼ (𝑆‘𝐵) ↔ (𝐴‘0) = (𝐵‘0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 2 | efgval.r | . . . . . . . 8 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 3 | efgval2.m | . . . . . . . 8 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 4 | efgval2.t | . . . . . . . 8 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 5 | efgred.d | . . . . . . . 8 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
| 6 | efgred.s | . . . . . . . 8 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
| 7 | 1, 2, 3, 4, 5, 6 | efgsfo 19653 | . . . . . . 7 ⊢ 𝑆:dom 𝑆–onto→𝑊 |
| 8 | fof 6754 | . . . . . . 7 ⊢ (𝑆:dom 𝑆–onto→𝑊 → 𝑆:dom 𝑆⟶𝑊) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ 𝑆:dom 𝑆⟶𝑊 |
| 10 | 9 | ffvelcdmi 7037 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑆 → (𝑆‘𝐵) ∈ 𝑊) |
| 11 | 10 | ad2antlr 727 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝑆‘𝐵) ∈ 𝑊) |
| 12 | 1, 2, 3, 4, 5, 6 | efgredeu 19666 | . . . 4 ⊢ ((𝑆‘𝐵) ∈ 𝑊 → ∃!𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) |
| 13 | reurmo 3354 | . . . 4 ⊢ (∃!𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵) → ∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) | |
| 14 | 11, 12, 13 | 3syl 18 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → ∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) |
| 15 | 1, 2, 3, 4, 5, 6 | efgsdm 19644 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴‘𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1))))) |
| 16 | 15 | simp2bi 1146 | . . . 4 ⊢ (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷) |
| 17 | 16 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∈ 𝐷) |
| 18 | 1, 2 | efger 19632 | . . . . 5 ⊢ ∼ Er 𝑊 |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → ∼ Er 𝑊) |
| 20 | 1, 2, 3, 4, 5, 6 | efgsrel 19648 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∼ (𝑆‘𝐴)) |
| 21 | 20 | ad2antrr 726 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∼ (𝑆‘𝐴)) |
| 22 | simpr 484 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝑆‘𝐴) ∼ (𝑆‘𝐵)) | |
| 23 | 19, 21, 22 | ertrd 8664 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∼ (𝑆‘𝐵)) |
| 24 | 1, 2, 3, 4, 5, 6 | efgsdm 19644 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵‘𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1))))) |
| 25 | 24 | simp2bi 1146 | . . . 4 ⊢ (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∈ 𝐷) |
| 26 | 25 | ad2antlr 727 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐵‘0) ∈ 𝐷) |
| 27 | 1, 2, 3, 4, 5, 6 | efgsrel 19648 | . . . 4 ⊢ (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∼ (𝑆‘𝐵)) |
| 28 | 27 | ad2antlr 727 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐵‘0) ∼ (𝑆‘𝐵)) |
| 29 | breq1 5105 | . . . 4 ⊢ (𝑑 = (𝐴‘0) → (𝑑 ∼ (𝑆‘𝐵) ↔ (𝐴‘0) ∼ (𝑆‘𝐵))) | |
| 30 | breq1 5105 | . . . 4 ⊢ (𝑑 = (𝐵‘0) → (𝑑 ∼ (𝑆‘𝐵) ↔ (𝐵‘0) ∼ (𝑆‘𝐵))) | |
| 31 | 29, 30 | rmoi 3851 | . . 3 ⊢ ((∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵) ∧ ((𝐴‘0) ∈ 𝐷 ∧ (𝐴‘0) ∼ (𝑆‘𝐵)) ∧ ((𝐵‘0) ∈ 𝐷 ∧ (𝐵‘0) ∼ (𝑆‘𝐵))) → (𝐴‘0) = (𝐵‘0)) |
| 32 | 14, 17, 23, 26, 28, 31 | syl122anc 1381 | . 2 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) = (𝐵‘0)) |
| 33 | 18 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → ∼ Er 𝑊) |
| 34 | 20 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) ∼ (𝑆‘𝐴)) |
| 35 | simpr 484 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = (𝐵‘0)) | |
| 36 | 27 | ad2antlr 727 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐵‘0) ∼ (𝑆‘𝐵)) |
| 37 | 35, 36 | eqbrtrd 5124 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) ∼ (𝑆‘𝐵)) |
| 38 | 33, 34, 37 | ertr3d 8666 | . 2 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑆‘𝐴) ∼ (𝑆‘𝐵)) |
| 39 | 32, 38 | impbida 800 | 1 ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) → ((𝑆‘𝐴) ∼ (𝑆‘𝐵) ↔ (𝐴‘0) = (𝐵‘0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3349 ∃*wrmo 3350 {crab 3402 ∖ cdif 3908 ∅c0 4292 {csn 4585 〈cop 4591 〈cotp 4593 ∪ ciun 4951 class class class wbr 5102 ↦ cmpt 5183 I cid 5525 × cxp 5629 dom cdm 5631 ran crn 5632 ⟶wf 6495 –onto→wfo 6497 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1oc1o 8404 2oc2o 8405 Er wer 8645 0cc0 11044 1c1 11045 − cmin 11381 ...cfz 13444 ..^cfzo 13591 ♯chash 14271 Word cword 14454 splice csplice 14690 〈“cs2 14783 ~FG cefg 19620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-ec 8650 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 df-substr 14582 df-pfx 14612 df-splice 14691 df-s2 14790 df-efg 19623 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |