![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgred2 | Structured version Visualization version GIF version |
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
Ref | Expression |
---|---|
efgred2 | ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) → ((𝑆‘𝐴) ∼ (𝑆‘𝐵) ↔ (𝐴‘0) = (𝐵‘0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | efgval.r | . . . . . . . 8 ⊢ ∼ = ( ~FG ‘𝐼) | |
3 | efgval2.m | . . . . . . . 8 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
4 | efgval2.t | . . . . . . . 8 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
5 | efgred.d | . . . . . . . 8 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
6 | efgred.s | . . . . . . . 8 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
7 | 1, 2, 3, 4, 5, 6 | efgsfo 18636 | . . . . . . 7 ⊢ 𝑆:dom 𝑆–onto→𝑊 |
8 | fof 6416 | . . . . . . 7 ⊢ (𝑆:dom 𝑆–onto→𝑊 → 𝑆:dom 𝑆⟶𝑊) | |
9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ 𝑆:dom 𝑆⟶𝑊 |
10 | 9 | ffvelrni 6673 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑆 → (𝑆‘𝐵) ∈ 𝑊) |
11 | 10 | ad2antlr 715 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝑆‘𝐵) ∈ 𝑊) |
12 | 1, 2, 3, 4, 5, 6 | efgredeu 18650 | . . . 4 ⊢ ((𝑆‘𝐵) ∈ 𝑊 → ∃!𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) |
13 | reurmo 3366 | . . . 4 ⊢ (∃!𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵) → ∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) | |
14 | 11, 12, 13 | 3syl 18 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → ∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) |
15 | 1, 2, 3, 4, 5, 6 | efgsdm 18626 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴‘𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1))))) |
16 | 15 | simp2bi 1127 | . . . 4 ⊢ (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷) |
17 | 16 | ad2antrr 714 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∈ 𝐷) |
18 | 1, 2 | efger 18614 | . . . . 5 ⊢ ∼ Er 𝑊 |
19 | 18 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → ∼ Er 𝑊) |
20 | 1, 2, 3, 4, 5, 6 | efgsrel 18630 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∼ (𝑆‘𝐴)) |
21 | 20 | ad2antrr 714 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∼ (𝑆‘𝐴)) |
22 | simpr 477 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝑆‘𝐴) ∼ (𝑆‘𝐵)) | |
23 | 19, 21, 22 | ertrd 8103 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∼ (𝑆‘𝐵)) |
24 | 1, 2, 3, 4, 5, 6 | efgsdm 18626 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵‘𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1))))) |
25 | 24 | simp2bi 1127 | . . . 4 ⊢ (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∈ 𝐷) |
26 | 25 | ad2antlr 715 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐵‘0) ∈ 𝐷) |
27 | 1, 2, 3, 4, 5, 6 | efgsrel 18630 | . . . 4 ⊢ (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∼ (𝑆‘𝐵)) |
28 | 27 | ad2antlr 715 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐵‘0) ∼ (𝑆‘𝐵)) |
29 | breq1 4928 | . . . 4 ⊢ (𝑑 = (𝐴‘0) → (𝑑 ∼ (𝑆‘𝐵) ↔ (𝐴‘0) ∼ (𝑆‘𝐵))) | |
30 | breq1 4928 | . . . 4 ⊢ (𝑑 = (𝐵‘0) → (𝑑 ∼ (𝑆‘𝐵) ↔ (𝐵‘0) ∼ (𝑆‘𝐵))) | |
31 | 29, 30 | rmoi 3771 | . . 3 ⊢ ((∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵) ∧ ((𝐴‘0) ∈ 𝐷 ∧ (𝐴‘0) ∼ (𝑆‘𝐵)) ∧ ((𝐵‘0) ∈ 𝐷 ∧ (𝐵‘0) ∼ (𝑆‘𝐵))) → (𝐴‘0) = (𝐵‘0)) |
32 | 14, 17, 23, 26, 28, 31 | syl122anc 1360 | . 2 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) = (𝐵‘0)) |
33 | 18 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → ∼ Er 𝑊) |
34 | 20 | ad2antrr 714 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) ∼ (𝑆‘𝐴)) |
35 | simpr 477 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = (𝐵‘0)) | |
36 | 27 | ad2antlr 715 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐵‘0) ∼ (𝑆‘𝐵)) |
37 | 35, 36 | eqbrtrd 4947 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) ∼ (𝑆‘𝐵)) |
38 | 33, 34, 37 | ertr3d 8105 | . 2 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑆‘𝐴) ∼ (𝑆‘𝐵)) |
39 | 32, 38 | impbida 789 | 1 ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) → ((𝑆‘𝐴) ∼ (𝑆‘𝐵) ↔ (𝐴‘0) = (𝐵‘0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∀wral 3081 ∃!wreu 3083 ∃*wrmo 3084 {crab 3085 ∖ cdif 3819 ∅c0 4172 {csn 4435 〈cop 4441 〈cotp 4443 ∪ ciun 4788 class class class wbr 4925 ↦ cmpt 5004 I cid 5307 × cxp 5401 dom cdm 5403 ran crn 5404 ⟶wf 6181 –onto→wfo 6183 ‘cfv 6185 (class class class)co 6974 ∈ cmpo 6976 1oc1o 7896 2oc2o 7897 Er wer 8084 0cc0 10333 1c1 10334 − cmin 10668 ...cfz 12706 ..^cfzo 12847 ♯chash 13503 Word cword 13670 splice csplice 13956 〈“cs2 14063 ~FG cefg 18602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-ot 4444 df-uni 4709 df-int 4746 df-iun 4790 df-iin 4791 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-2o 7904 df-oadd 7907 df-er 8087 df-ec 8089 df-map 8206 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-2 11501 df-n0 11706 df-z 11792 df-uz 12057 df-rp 12203 df-fz 12707 df-fzo 12848 df-hash 13504 df-word 13671 df-concat 13732 df-s1 13757 df-substr 13802 df-pfx 13851 df-splice 13958 df-s2 14070 df-efg 18605 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |