MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred2 Structured version   Visualization version   GIF version

Theorem efgred2 19715
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgred2 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) (𝑆𝐵) ↔ (𝐴‘0) = (𝐵‘0)))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgred2
Dummy variables 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . . . . 8 = ( ~FG𝐼)
3 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . . . . 8 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . . . 8 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . . . 8 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsfo 19701 . . . . . . 7 𝑆:dom 𝑆onto𝑊
8 fof 6816 . . . . . . 7 (𝑆:dom 𝑆onto𝑊𝑆:dom 𝑆𝑊)
97, 8ax-mp 5 . . . . . 6 𝑆:dom 𝑆𝑊
109ffvelcdmi 7098 . . . . 5 (𝐵 ∈ dom 𝑆 → (𝑆𝐵) ∈ 𝑊)
1110ad2antlr 725 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝑆𝐵) ∈ 𝑊)
121, 2, 3, 4, 5, 6efgredeu 19714 . . . 4 ((𝑆𝐵) ∈ 𝑊 → ∃!𝑑𝐷 𝑑 (𝑆𝐵))
13 reurmo 3377 . . . 4 (∃!𝑑𝐷 𝑑 (𝑆𝐵) → ∃*𝑑𝐷 𝑑 (𝑆𝐵))
1411, 12, 133syl 18 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → ∃*𝑑𝐷 𝑑 (𝑆𝐵))
151, 2, 3, 4, 5, 6efgsdm 19692 . . . . 5 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1)))))
1615simp2bi 1143 . . . 4 (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷)
1716ad2antrr 724 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) ∈ 𝐷)
181, 2efger 19680 . . . . 5 Er 𝑊
1918a1i 11 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → Er 𝑊)
201, 2, 3, 4, 5, 6efgsrel 19696 . . . . 5 (𝐴 ∈ dom 𝑆 → (𝐴‘0) (𝑆𝐴))
2120ad2antrr 724 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) (𝑆𝐴))
22 simpr 483 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝑆𝐴) (𝑆𝐵))
2319, 21, 22ertrd 8747 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) (𝑆𝐵))
241, 2, 3, 4, 5, 6efgsdm 19692 . . . . 5 (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1)))))
2524simp2bi 1143 . . . 4 (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∈ 𝐷)
2625ad2antlr 725 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐵‘0) ∈ 𝐷)
271, 2, 3, 4, 5, 6efgsrel 19696 . . . 4 (𝐵 ∈ dom 𝑆 → (𝐵‘0) (𝑆𝐵))
2827ad2antlr 725 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐵‘0) (𝑆𝐵))
29 breq1 5155 . . . 4 (𝑑 = (𝐴‘0) → (𝑑 (𝑆𝐵) ↔ (𝐴‘0) (𝑆𝐵)))
30 breq1 5155 . . . 4 (𝑑 = (𝐵‘0) → (𝑑 (𝑆𝐵) ↔ (𝐵‘0) (𝑆𝐵)))
3129, 30rmoi 3886 . . 3 ((∃*𝑑𝐷 𝑑 (𝑆𝐵) ∧ ((𝐴‘0) ∈ 𝐷 ∧ (𝐴‘0) (𝑆𝐵)) ∧ ((𝐵‘0) ∈ 𝐷 ∧ (𝐵‘0) (𝑆𝐵))) → (𝐴‘0) = (𝐵‘0))
3214, 17, 23, 26, 28, 31syl122anc 1376 . 2 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
3318a1i 11 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → Er 𝑊)
3420ad2antrr 724 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) (𝑆𝐴))
35 simpr 483 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = (𝐵‘0))
3627ad2antlr 725 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐵‘0) (𝑆𝐵))
3735, 36eqbrtrd 5174 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) (𝑆𝐵))
3833, 34, 37ertr3d 8749 . 2 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑆𝐴) (𝑆𝐵))
3932, 38impbida 799 1 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) (𝑆𝐵) ↔ (𝐴‘0) = (𝐵‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3058  ∃!wreu 3372  ∃*wrmo 3373  {crab 3430  cdif 3946  c0 4326  {csn 4632  cop 4638  cotp 4640   ciun 5000   class class class wbr 5152  cmpt 5235   I cid 5579   × cxp 5680  dom cdm 5682  ran crn 5683  wf 6549  ontowfo 6551  cfv 6553  (class class class)co 7426  cmpo 7428  1oc1o 8486  2oc2o 8487   Er wer 8728  0cc0 11146  1c1 11147  cmin 11482  ...cfz 13524  ..^cfzo 13667  chash 14329  Word cword 14504   splice csplice 14739  ⟨“cs2 14832   ~FG cefg 19668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-ot 4641  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-er 8731  df-ec 8733  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-rp 13015  df-fz 13525  df-fzo 13668  df-hash 14330  df-word 14505  df-concat 14561  df-s1 14586  df-substr 14631  df-pfx 14661  df-splice 14740  df-s2 14839  df-efg 19671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator