| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgred2 | Structured version Visualization version GIF version | ||
| Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| Ref | Expression |
|---|---|
| efgred2 | ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) → ((𝑆‘𝐴) ∼ (𝑆‘𝐵) ↔ (𝐴‘0) = (𝐵‘0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 2 | efgval.r | . . . . . . . 8 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 3 | efgval2.m | . . . . . . . 8 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 4 | efgval2.t | . . . . . . . 8 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 5 | efgred.d | . . . . . . . 8 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
| 6 | efgred.s | . . . . . . . 8 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
| 7 | 1, 2, 3, 4, 5, 6 | efgsfo 19618 | . . . . . . 7 ⊢ 𝑆:dom 𝑆–onto→𝑊 |
| 8 | fof 6736 | . . . . . . 7 ⊢ (𝑆:dom 𝑆–onto→𝑊 → 𝑆:dom 𝑆⟶𝑊) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ 𝑆:dom 𝑆⟶𝑊 |
| 10 | 9 | ffvelcdmi 7017 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑆 → (𝑆‘𝐵) ∈ 𝑊) |
| 11 | 10 | ad2antlr 727 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝑆‘𝐵) ∈ 𝑊) |
| 12 | 1, 2, 3, 4, 5, 6 | efgredeu 19631 | . . . 4 ⊢ ((𝑆‘𝐵) ∈ 𝑊 → ∃!𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) |
| 13 | reurmo 3346 | . . . 4 ⊢ (∃!𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵) → ∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) | |
| 14 | 11, 12, 13 | 3syl 18 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → ∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) |
| 15 | 1, 2, 3, 4, 5, 6 | efgsdm 19609 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴‘𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1))))) |
| 16 | 15 | simp2bi 1146 | . . . 4 ⊢ (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷) |
| 17 | 16 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∈ 𝐷) |
| 18 | 1, 2 | efger 19597 | . . . . 5 ⊢ ∼ Er 𝑊 |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → ∼ Er 𝑊) |
| 20 | 1, 2, 3, 4, 5, 6 | efgsrel 19613 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∼ (𝑆‘𝐴)) |
| 21 | 20 | ad2antrr 726 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∼ (𝑆‘𝐴)) |
| 22 | simpr 484 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝑆‘𝐴) ∼ (𝑆‘𝐵)) | |
| 23 | 19, 21, 22 | ertrd 8641 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∼ (𝑆‘𝐵)) |
| 24 | 1, 2, 3, 4, 5, 6 | efgsdm 19609 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵‘𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1))))) |
| 25 | 24 | simp2bi 1146 | . . . 4 ⊢ (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∈ 𝐷) |
| 26 | 25 | ad2antlr 727 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐵‘0) ∈ 𝐷) |
| 27 | 1, 2, 3, 4, 5, 6 | efgsrel 19613 | . . . 4 ⊢ (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∼ (𝑆‘𝐵)) |
| 28 | 27 | ad2antlr 727 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐵‘0) ∼ (𝑆‘𝐵)) |
| 29 | breq1 5095 | . . . 4 ⊢ (𝑑 = (𝐴‘0) → (𝑑 ∼ (𝑆‘𝐵) ↔ (𝐴‘0) ∼ (𝑆‘𝐵))) | |
| 30 | breq1 5095 | . . . 4 ⊢ (𝑑 = (𝐵‘0) → (𝑑 ∼ (𝑆‘𝐵) ↔ (𝐵‘0) ∼ (𝑆‘𝐵))) | |
| 31 | 29, 30 | rmoi 3843 | . . 3 ⊢ ((∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵) ∧ ((𝐴‘0) ∈ 𝐷 ∧ (𝐴‘0) ∼ (𝑆‘𝐵)) ∧ ((𝐵‘0) ∈ 𝐷 ∧ (𝐵‘0) ∼ (𝑆‘𝐵))) → (𝐴‘0) = (𝐵‘0)) |
| 32 | 14, 17, 23, 26, 28, 31 | syl122anc 1381 | . 2 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) = (𝐵‘0)) |
| 33 | 18 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → ∼ Er 𝑊) |
| 34 | 20 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) ∼ (𝑆‘𝐴)) |
| 35 | simpr 484 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = (𝐵‘0)) | |
| 36 | 27 | ad2antlr 727 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐵‘0) ∼ (𝑆‘𝐵)) |
| 37 | 35, 36 | eqbrtrd 5114 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) ∼ (𝑆‘𝐵)) |
| 38 | 33, 34, 37 | ertr3d 8643 | . 2 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑆‘𝐴) ∼ (𝑆‘𝐵)) |
| 39 | 32, 38 | impbida 800 | 1 ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) → ((𝑆‘𝐴) ∼ (𝑆‘𝐵) ↔ (𝐴‘0) = (𝐵‘0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3341 ∃*wrmo 3342 {crab 3394 ∖ cdif 3900 ∅c0 4284 {csn 4577 〈cop 4583 〈cotp 4585 ∪ ciun 4941 class class class wbr 5092 ↦ cmpt 5173 I cid 5513 × cxp 5617 dom cdm 5619 ran crn 5620 ⟶wf 6478 –onto→wfo 6480 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 1oc1o 8381 2oc2o 8382 Er wer 8622 0cc0 11009 1c1 11010 − cmin 11347 ...cfz 13410 ..^cfzo 13557 ♯chash 14237 Word cword 14420 splice csplice 14655 〈“cs2 14748 ~FG cefg 19585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-ec 8627 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14503 df-substr 14548 df-pfx 14578 df-splice 14656 df-s2 14755 df-efg 19588 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |