Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgred2 | Structured version Visualization version GIF version |
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
Ref | Expression |
---|---|
efgred2 | ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) → ((𝑆‘𝐴) ∼ (𝑆‘𝐵) ↔ (𝐴‘0) = (𝐵‘0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | efgval.r | . . . . . . . 8 ⊢ ∼ = ( ~FG ‘𝐼) | |
3 | efgval2.m | . . . . . . . 8 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
4 | efgval2.t | . . . . . . . 8 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
5 | efgred.d | . . . . . . . 8 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
6 | efgred.s | . . . . . . . 8 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
7 | 1, 2, 3, 4, 5, 6 | efgsfo 19345 | . . . . . . 7 ⊢ 𝑆:dom 𝑆–onto→𝑊 |
8 | fof 6688 | . . . . . . 7 ⊢ (𝑆:dom 𝑆–onto→𝑊 → 𝑆:dom 𝑆⟶𝑊) | |
9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ 𝑆:dom 𝑆⟶𝑊 |
10 | 9 | ffvelrni 6960 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑆 → (𝑆‘𝐵) ∈ 𝑊) |
11 | 10 | ad2antlr 724 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝑆‘𝐵) ∈ 𝑊) |
12 | 1, 2, 3, 4, 5, 6 | efgredeu 19358 | . . . 4 ⊢ ((𝑆‘𝐵) ∈ 𝑊 → ∃!𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) |
13 | reurmo 3364 | . . . 4 ⊢ (∃!𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵) → ∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) | |
14 | 11, 12, 13 | 3syl 18 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → ∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) |
15 | 1, 2, 3, 4, 5, 6 | efgsdm 19336 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴‘𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1))))) |
16 | 15 | simp2bi 1145 | . . . 4 ⊢ (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷) |
17 | 16 | ad2antrr 723 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∈ 𝐷) |
18 | 1, 2 | efger 19324 | . . . . 5 ⊢ ∼ Er 𝑊 |
19 | 18 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → ∼ Er 𝑊) |
20 | 1, 2, 3, 4, 5, 6 | efgsrel 19340 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∼ (𝑆‘𝐴)) |
21 | 20 | ad2antrr 723 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∼ (𝑆‘𝐴)) |
22 | simpr 485 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝑆‘𝐴) ∼ (𝑆‘𝐵)) | |
23 | 19, 21, 22 | ertrd 8514 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∼ (𝑆‘𝐵)) |
24 | 1, 2, 3, 4, 5, 6 | efgsdm 19336 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵‘𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1))))) |
25 | 24 | simp2bi 1145 | . . . 4 ⊢ (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∈ 𝐷) |
26 | 25 | ad2antlr 724 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐵‘0) ∈ 𝐷) |
27 | 1, 2, 3, 4, 5, 6 | efgsrel 19340 | . . . 4 ⊢ (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∼ (𝑆‘𝐵)) |
28 | 27 | ad2antlr 724 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐵‘0) ∼ (𝑆‘𝐵)) |
29 | breq1 5077 | . . . 4 ⊢ (𝑑 = (𝐴‘0) → (𝑑 ∼ (𝑆‘𝐵) ↔ (𝐴‘0) ∼ (𝑆‘𝐵))) | |
30 | breq1 5077 | . . . 4 ⊢ (𝑑 = (𝐵‘0) → (𝑑 ∼ (𝑆‘𝐵) ↔ (𝐵‘0) ∼ (𝑆‘𝐵))) | |
31 | 29, 30 | rmoi 3824 | . . 3 ⊢ ((∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵) ∧ ((𝐴‘0) ∈ 𝐷 ∧ (𝐴‘0) ∼ (𝑆‘𝐵)) ∧ ((𝐵‘0) ∈ 𝐷 ∧ (𝐵‘0) ∼ (𝑆‘𝐵))) → (𝐴‘0) = (𝐵‘0)) |
32 | 14, 17, 23, 26, 28, 31 | syl122anc 1378 | . 2 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) = (𝐵‘0)) |
33 | 18 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → ∼ Er 𝑊) |
34 | 20 | ad2antrr 723 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) ∼ (𝑆‘𝐴)) |
35 | simpr 485 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = (𝐵‘0)) | |
36 | 27 | ad2antlr 724 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐵‘0) ∼ (𝑆‘𝐵)) |
37 | 35, 36 | eqbrtrd 5096 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) ∼ (𝑆‘𝐵)) |
38 | 33, 34, 37 | ertr3d 8516 | . 2 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑆‘𝐴) ∼ (𝑆‘𝐵)) |
39 | 32, 38 | impbida 798 | 1 ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) → ((𝑆‘𝐴) ∼ (𝑆‘𝐵) ↔ (𝐴‘0) = (𝐵‘0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃!wreu 3066 ∃*wrmo 3067 {crab 3068 ∖ cdif 3884 ∅c0 4256 {csn 4561 〈cop 4567 〈cotp 4569 ∪ ciun 4924 class class class wbr 5074 ↦ cmpt 5157 I cid 5488 × cxp 5587 dom cdm 5589 ran crn 5590 ⟶wf 6429 –onto→wfo 6431 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 1oc1o 8290 2oc2o 8291 Er wer 8495 0cc0 10871 1c1 10872 − cmin 11205 ...cfz 13239 ..^cfzo 13382 ♯chash 14044 Word cword 14217 splice csplice 14462 〈“cs2 14554 ~FG cefg 19312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-ec 8500 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-substr 14354 df-pfx 14384 df-splice 14463 df-s2 14561 df-efg 19315 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |