Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred2 Structured version   Visualization version   GIF version

Theorem efgred2 18874
 Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgred2 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) (𝑆𝐵) ↔ (𝐴‘0) = (𝐵‘0)))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgred2
Dummy variables 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . . . . 8 = ( ~FG𝐼)
3 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . . . . 8 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . . . 8 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . . . 8 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsfo 18860 . . . . . . 7 𝑆:dom 𝑆onto𝑊
8 fof 6569 . . . . . . 7 (𝑆:dom 𝑆onto𝑊𝑆:dom 𝑆𝑊)
97, 8ax-mp 5 . . . . . 6 𝑆:dom 𝑆𝑊
109ffvelrni 6831 . . . . 5 (𝐵 ∈ dom 𝑆 → (𝑆𝐵) ∈ 𝑊)
1110ad2antlr 726 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝑆𝐵) ∈ 𝑊)
121, 2, 3, 4, 5, 6efgredeu 18873 . . . 4 ((𝑆𝐵) ∈ 𝑊 → ∃!𝑑𝐷 𝑑 (𝑆𝐵))
13 reurmo 3381 . . . 4 (∃!𝑑𝐷 𝑑 (𝑆𝐵) → ∃*𝑑𝐷 𝑑 (𝑆𝐵))
1411, 12, 133syl 18 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → ∃*𝑑𝐷 𝑑 (𝑆𝐵))
151, 2, 3, 4, 5, 6efgsdm 18851 . . . . 5 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1)))))
1615simp2bi 1143 . . . 4 (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷)
1716ad2antrr 725 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) ∈ 𝐷)
181, 2efger 18839 . . . . 5 Er 𝑊
1918a1i 11 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → Er 𝑊)
201, 2, 3, 4, 5, 6efgsrel 18855 . . . . 5 (𝐴 ∈ dom 𝑆 → (𝐴‘0) (𝑆𝐴))
2120ad2antrr 725 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) (𝑆𝐴))
22 simpr 488 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝑆𝐴) (𝑆𝐵))
2319, 21, 22ertrd 8292 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) (𝑆𝐵))
241, 2, 3, 4, 5, 6efgsdm 18851 . . . . 5 (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1)))))
2524simp2bi 1143 . . . 4 (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∈ 𝐷)
2625ad2antlr 726 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐵‘0) ∈ 𝐷)
271, 2, 3, 4, 5, 6efgsrel 18855 . . . 4 (𝐵 ∈ dom 𝑆 → (𝐵‘0) (𝑆𝐵))
2827ad2antlr 726 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐵‘0) (𝑆𝐵))
29 breq1 5036 . . . 4 (𝑑 = (𝐴‘0) → (𝑑 (𝑆𝐵) ↔ (𝐴‘0) (𝑆𝐵)))
30 breq1 5036 . . . 4 (𝑑 = (𝐵‘0) → (𝑑 (𝑆𝐵) ↔ (𝐵‘0) (𝑆𝐵)))
3129, 30rmoi 3823 . . 3 ((∃*𝑑𝐷 𝑑 (𝑆𝐵) ∧ ((𝐴‘0) ∈ 𝐷 ∧ (𝐴‘0) (𝑆𝐵)) ∧ ((𝐵‘0) ∈ 𝐷 ∧ (𝐵‘0) (𝑆𝐵))) → (𝐴‘0) = (𝐵‘0))
3214, 17, 23, 26, 28, 31syl122anc 1376 . 2 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
3318a1i 11 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → Er 𝑊)
3420ad2antrr 725 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) (𝑆𝐴))
35 simpr 488 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = (𝐵‘0))
3627ad2antlr 726 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐵‘0) (𝑆𝐵))
3735, 36eqbrtrd 5055 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) (𝑆𝐵))
3833, 34, 37ertr3d 8294 . 2 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑆𝐴) (𝑆𝐵))
3932, 38impbida 800 1 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) (𝑆𝐵) ↔ (𝐴‘0) = (𝐵‘0)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃!wreu 3111  ∃*wrmo 3112  {crab 3113   ∖ cdif 3881  ∅c0 4246  {csn 4528  ⟨cop 4534  ⟨cotp 4536  ∪ ciun 4884   class class class wbr 5033   ↦ cmpt 5113   I cid 5427   × cxp 5521  dom cdm 5523  ran crn 5524  ⟶wf 6324  –onto→wfo 6326  ‘cfv 6328  (class class class)co 7139   ∈ cmpo 7141  1oc1o 8082  2oc2o 8083   Er wer 8273  0cc0 10530  1c1 10531   − cmin 10863  ...cfz 12889  ..^cfzo 13032  ♯chash 13690  Word cword 13861   splice csplice 14106  ⟨“cs2 14198   ~FG cefg 18827 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-ec 8278  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-concat 13918  df-s1 13945  df-substr 13998  df-pfx 14028  df-splice 14107  df-s2 14205  df-efg 18830 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator