![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgred2 | Structured version Visualization version GIF version |
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
Ref | Expression |
---|---|
efgred2 | ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) → ((𝑆‘𝐴) ∼ (𝑆‘𝐵) ↔ (𝐴‘0) = (𝐵‘0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | efgval.r | . . . . . . . 8 ⊢ ∼ = ( ~FG ‘𝐼) | |
3 | efgval2.m | . . . . . . . 8 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
4 | efgval2.t | . . . . . . . 8 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
5 | efgred.d | . . . . . . . 8 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
6 | efgred.s | . . . . . . . 8 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
7 | 1, 2, 3, 4, 5, 6 | efgsfo 19772 | . . . . . . 7 ⊢ 𝑆:dom 𝑆–onto→𝑊 |
8 | fof 6821 | . . . . . . 7 ⊢ (𝑆:dom 𝑆–onto→𝑊 → 𝑆:dom 𝑆⟶𝑊) | |
9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ 𝑆:dom 𝑆⟶𝑊 |
10 | 9 | ffvelcdmi 7103 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑆 → (𝑆‘𝐵) ∈ 𝑊) |
11 | 10 | ad2antlr 727 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝑆‘𝐵) ∈ 𝑊) |
12 | 1, 2, 3, 4, 5, 6 | efgredeu 19785 | . . . 4 ⊢ ((𝑆‘𝐵) ∈ 𝑊 → ∃!𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) |
13 | reurmo 3381 | . . . 4 ⊢ (∃!𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵) → ∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) | |
14 | 11, 12, 13 | 3syl 18 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → ∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵)) |
15 | 1, 2, 3, 4, 5, 6 | efgsdm 19763 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴‘𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1))))) |
16 | 15 | simp2bi 1145 | . . . 4 ⊢ (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷) |
17 | 16 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∈ 𝐷) |
18 | 1, 2 | efger 19751 | . . . . 5 ⊢ ∼ Er 𝑊 |
19 | 18 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → ∼ Er 𝑊) |
20 | 1, 2, 3, 4, 5, 6 | efgsrel 19767 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∼ (𝑆‘𝐴)) |
21 | 20 | ad2antrr 726 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∼ (𝑆‘𝐴)) |
22 | simpr 484 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝑆‘𝐴) ∼ (𝑆‘𝐵)) | |
23 | 19, 21, 22 | ertrd 8760 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) ∼ (𝑆‘𝐵)) |
24 | 1, 2, 3, 4, 5, 6 | efgsdm 19763 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵‘𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1))))) |
25 | 24 | simp2bi 1145 | . . . 4 ⊢ (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∈ 𝐷) |
26 | 25 | ad2antlr 727 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐵‘0) ∈ 𝐷) |
27 | 1, 2, 3, 4, 5, 6 | efgsrel 19767 | . . . 4 ⊢ (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∼ (𝑆‘𝐵)) |
28 | 27 | ad2antlr 727 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐵‘0) ∼ (𝑆‘𝐵)) |
29 | breq1 5151 | . . . 4 ⊢ (𝑑 = (𝐴‘0) → (𝑑 ∼ (𝑆‘𝐵) ↔ (𝐴‘0) ∼ (𝑆‘𝐵))) | |
30 | breq1 5151 | . . . 4 ⊢ (𝑑 = (𝐵‘0) → (𝑑 ∼ (𝑆‘𝐵) ↔ (𝐵‘0) ∼ (𝑆‘𝐵))) | |
31 | 29, 30 | rmoi 3900 | . . 3 ⊢ ((∃*𝑑 ∈ 𝐷 𝑑 ∼ (𝑆‘𝐵) ∧ ((𝐴‘0) ∈ 𝐷 ∧ (𝐴‘0) ∼ (𝑆‘𝐵)) ∧ ((𝐵‘0) ∈ 𝐷 ∧ (𝐵‘0) ∼ (𝑆‘𝐵))) → (𝐴‘0) = (𝐵‘0)) |
32 | 14, 17, 23, 26, 28, 31 | syl122anc 1378 | . 2 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝑆‘𝐴) ∼ (𝑆‘𝐵)) → (𝐴‘0) = (𝐵‘0)) |
33 | 18 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → ∼ Er 𝑊) |
34 | 20 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) ∼ (𝑆‘𝐴)) |
35 | simpr 484 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = (𝐵‘0)) | |
36 | 27 | ad2antlr 727 | . . . 4 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐵‘0) ∼ (𝑆‘𝐵)) |
37 | 35, 36 | eqbrtrd 5170 | . . 3 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) ∼ (𝑆‘𝐵)) |
38 | 33, 34, 37 | ertr3d 8762 | . 2 ⊢ (((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑆‘𝐴) ∼ (𝑆‘𝐵)) |
39 | 32, 38 | impbida 801 | 1 ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) → ((𝑆‘𝐴) ∼ (𝑆‘𝐵) ↔ (𝐴‘0) = (𝐵‘0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃!wreu 3376 ∃*wrmo 3377 {crab 3433 ∖ cdif 3960 ∅c0 4339 {csn 4631 〈cop 4637 〈cotp 4639 ∪ ciun 4996 class class class wbr 5148 ↦ cmpt 5231 I cid 5582 × cxp 5687 dom cdm 5689 ran crn 5690 ⟶wf 6559 –onto→wfo 6561 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 1oc1o 8498 2oc2o 8499 Er wer 8741 0cc0 11153 1c1 11154 − cmin 11490 ...cfz 13544 ..^cfzo 13691 ♯chash 14366 Word cword 14549 splice csplice 14784 〈“cs2 14877 ~FG cefg 19739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-ec 8746 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 df-substr 14676 df-pfx 14706 df-splice 14785 df-s2 14884 df-efg 19742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |