MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred2 Structured version   Visualization version   GIF version

Theorem efgred2 19665
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgred2 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) (𝑆𝐵) ↔ (𝐴‘0) = (𝐵‘0)))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgred2
Dummy variables 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . . . . 8 = ( ~FG𝐼)
3 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . . . . 8 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . . . 8 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . . . 8 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsfo 19651 . . . . . . 7 𝑆:dom 𝑆onto𝑊
8 fof 6735 . . . . . . 7 (𝑆:dom 𝑆onto𝑊𝑆:dom 𝑆𝑊)
97, 8ax-mp 5 . . . . . 6 𝑆:dom 𝑆𝑊
109ffvelcdmi 7016 . . . . 5 (𝐵 ∈ dom 𝑆 → (𝑆𝐵) ∈ 𝑊)
1110ad2antlr 727 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝑆𝐵) ∈ 𝑊)
121, 2, 3, 4, 5, 6efgredeu 19664 . . . 4 ((𝑆𝐵) ∈ 𝑊 → ∃!𝑑𝐷 𝑑 (𝑆𝐵))
13 reurmo 3349 . . . 4 (∃!𝑑𝐷 𝑑 (𝑆𝐵) → ∃*𝑑𝐷 𝑑 (𝑆𝐵))
1411, 12, 133syl 18 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → ∃*𝑑𝐷 𝑑 (𝑆𝐵))
151, 2, 3, 4, 5, 6efgsdm 19642 . . . . 5 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1)))))
1615simp2bi 1146 . . . 4 (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷)
1716ad2antrr 726 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) ∈ 𝐷)
181, 2efger 19630 . . . . 5 Er 𝑊
1918a1i 11 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → Er 𝑊)
201, 2, 3, 4, 5, 6efgsrel 19646 . . . . 5 (𝐴 ∈ dom 𝑆 → (𝐴‘0) (𝑆𝐴))
2120ad2antrr 726 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) (𝑆𝐴))
22 simpr 484 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝑆𝐴) (𝑆𝐵))
2319, 21, 22ertrd 8638 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) (𝑆𝐵))
241, 2, 3, 4, 5, 6efgsdm 19642 . . . . 5 (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1)))))
2524simp2bi 1146 . . . 4 (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∈ 𝐷)
2625ad2antlr 727 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐵‘0) ∈ 𝐷)
271, 2, 3, 4, 5, 6efgsrel 19646 . . . 4 (𝐵 ∈ dom 𝑆 → (𝐵‘0) (𝑆𝐵))
2827ad2antlr 727 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐵‘0) (𝑆𝐵))
29 breq1 5092 . . . 4 (𝑑 = (𝐴‘0) → (𝑑 (𝑆𝐵) ↔ (𝐴‘0) (𝑆𝐵)))
30 breq1 5092 . . . 4 (𝑑 = (𝐵‘0) → (𝑑 (𝑆𝐵) ↔ (𝐵‘0) (𝑆𝐵)))
3129, 30rmoi 3837 . . 3 ((∃*𝑑𝐷 𝑑 (𝑆𝐵) ∧ ((𝐴‘0) ∈ 𝐷 ∧ (𝐴‘0) (𝑆𝐵)) ∧ ((𝐵‘0) ∈ 𝐷 ∧ (𝐵‘0) (𝑆𝐵))) → (𝐴‘0) = (𝐵‘0))
3214, 17, 23, 26, 28, 31syl122anc 1381 . 2 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
3318a1i 11 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → Er 𝑊)
3420ad2antrr 726 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) (𝑆𝐴))
35 simpr 484 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = (𝐵‘0))
3627ad2antlr 727 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐵‘0) (𝑆𝐵))
3735, 36eqbrtrd 5111 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) (𝑆𝐵))
3833, 34, 37ertr3d 8640 . 2 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑆𝐴) (𝑆𝐵))
3932, 38impbida 800 1 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) (𝑆𝐵) ↔ (𝐴‘0) = (𝐵‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  ∃*wrmo 3345  {crab 3395  cdif 3894  c0 4280  {csn 4573  cop 4579  cotp 4581   ciun 4939   class class class wbr 5089  cmpt 5170   I cid 5508   × cxp 5612  dom cdm 5614  ran crn 5615  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  cmpo 7348  1oc1o 8378  2oc2o 8379   Er wer 8619  0cc0 11006  1c1 11007  cmin 11344  ...cfz 13407  ..^cfzo 13554  chash 14237  Word cword 14420   splice csplice 14656  ⟨“cs2 14748   ~FG cefg 19618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ec 8624  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-splice 14657  df-s2 14755  df-efg 19621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator