| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsqrtd | Structured version Visualization version GIF version | ||
| Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| eqsqrtd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| eqsqrtd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| eqsqrtd.3 | ⊢ (𝜑 → (𝐴↑2) = 𝐵) |
| eqsqrtd.4 | ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) |
| eqsqrtd.5 | ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) |
| Ref | Expression |
|---|---|
| eqsqrtd | ⊢ (𝜑 → 𝐴 = (√‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsqrtd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 2 | sqreu 15263 | . . 3 ⊢ (𝐵 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | |
| 3 | reurmo 3349 | . . 3 ⊢ (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) |
| 5 | eqsqrtd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 6 | eqsqrtd.3 | . . 3 ⊢ (𝜑 → (𝐴↑2) = 𝐵) | |
| 7 | eqsqrtd.4 | . . 3 ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) | |
| 8 | eqsqrtd.5 | . . . 4 ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) | |
| 9 | df-nel 3033 | . . . 4 ⊢ ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝜑 → (i · 𝐴) ∉ ℝ+) |
| 11 | 6, 7, 10 | 3jca 1128 | . 2 ⊢ (𝜑 → ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) |
| 12 | sqrtcl 15264 | . . 3 ⊢ (𝐵 ∈ ℂ → (√‘𝐵) ∈ ℂ) | |
| 13 | 1, 12 | syl 17 | . 2 ⊢ (𝜑 → (√‘𝐵) ∈ ℂ) |
| 14 | sqrtthlem 15265 | . . 3 ⊢ (𝐵 ∈ ℂ → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)) | |
| 15 | 1, 14 | syl 17 | . 2 ⊢ (𝜑 → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)) |
| 16 | oveq1 7348 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2)) | |
| 17 | 16 | eqeq1d 2733 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥↑2) = 𝐵 ↔ (𝐴↑2) = 𝐵)) |
| 18 | fveq2 6817 | . . . . 5 ⊢ (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴)) | |
| 19 | 18 | breq2d 5098 | . . . 4 ⊢ (𝑥 = 𝐴 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝐴))) |
| 20 | oveq2 7349 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
| 21 | neleq1 3038 | . . . . 5 ⊢ ((i · 𝑥) = (i · 𝐴) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+)) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝑥 = 𝐴 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+)) |
| 23 | 17, 19, 22 | 3anbi123d 1438 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+))) |
| 24 | oveq1 7348 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (𝑥↑2) = ((√‘𝐵)↑2)) | |
| 25 | 24 | eqeq1d 2733 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → ((𝑥↑2) = 𝐵 ↔ ((√‘𝐵)↑2) = 𝐵)) |
| 26 | fveq2 6817 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (ℜ‘𝑥) = (ℜ‘(√‘𝐵))) | |
| 27 | 26 | breq2d 5098 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(√‘𝐵)))) |
| 28 | oveq2 7349 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (i · 𝑥) = (i · (√‘𝐵))) | |
| 29 | neleq1 3038 | . . . . 5 ⊢ ((i · 𝑥) = (i · (√‘𝐵)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+)) | |
| 30 | 28, 29 | syl 17 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+)) |
| 31 | 25, 27, 30 | 3anbi123d 1438 | . . 3 ⊢ (𝑥 = (√‘𝐵) → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) |
| 32 | 23, 31 | rmoi 3837 | . 2 ⊢ ((∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ (𝐴 ∈ ℂ ∧ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) ∧ ((√‘𝐵) ∈ ℂ ∧ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) → 𝐴 = (√‘𝐵)) |
| 33 | 4, 5, 11, 13, 15, 32 | syl122anc 1381 | 1 ⊢ (𝜑 → 𝐴 = (√‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 ∃!wreu 3344 ∃*wrmo 3345 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 0cc0 11001 ici 11003 · cmul 11006 ≤ cle 11142 2c2 12175 ℝ+crp 12885 ↑cexp 13963 ℜcre 14999 √csqrt 15135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 |
| This theorem is referenced by: eqsqrt2d 15271 cphsqrtcl2 25108 constrsqrtcl 33784 sqrtcval 43674 |
| Copyright terms: Public domain | W3C validator |