Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsqrtd | Structured version Visualization version GIF version |
Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
Ref | Expression |
---|---|
eqsqrtd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
eqsqrtd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
eqsqrtd.3 | ⊢ (𝜑 → (𝐴↑2) = 𝐵) |
eqsqrtd.4 | ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) |
eqsqrtd.5 | ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) |
Ref | Expression |
---|---|
eqsqrtd | ⊢ (𝜑 → 𝐴 = (√‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsqrtd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
2 | sqreu 15000 | . . 3 ⊢ (𝐵 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | |
3 | reurmo 3354 | . . 3 ⊢ (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) |
5 | eqsqrtd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
6 | eqsqrtd.3 | . . 3 ⊢ (𝜑 → (𝐴↑2) = 𝐵) | |
7 | eqsqrtd.4 | . . 3 ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) | |
8 | eqsqrtd.5 | . . . 4 ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) | |
9 | df-nel 3049 | . . . 4 ⊢ ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ (𝜑 → (i · 𝐴) ∉ ℝ+) |
11 | 6, 7, 10 | 3jca 1126 | . 2 ⊢ (𝜑 → ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) |
12 | sqrtcl 15001 | . . 3 ⊢ (𝐵 ∈ ℂ → (√‘𝐵) ∈ ℂ) | |
13 | 1, 12 | syl 17 | . 2 ⊢ (𝜑 → (√‘𝐵) ∈ ℂ) |
14 | sqrtthlem 15002 | . . 3 ⊢ (𝐵 ∈ ℂ → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)) | |
15 | 1, 14 | syl 17 | . 2 ⊢ (𝜑 → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)) |
16 | oveq1 7262 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2)) | |
17 | 16 | eqeq1d 2740 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥↑2) = 𝐵 ↔ (𝐴↑2) = 𝐵)) |
18 | fveq2 6756 | . . . . 5 ⊢ (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴)) | |
19 | 18 | breq2d 5082 | . . . 4 ⊢ (𝑥 = 𝐴 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝐴))) |
20 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
21 | neleq1 3053 | . . . . 5 ⊢ ((i · 𝑥) = (i · 𝐴) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+)) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝑥 = 𝐴 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+)) |
23 | 17, 19, 22 | 3anbi123d 1434 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+))) |
24 | oveq1 7262 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (𝑥↑2) = ((√‘𝐵)↑2)) | |
25 | 24 | eqeq1d 2740 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → ((𝑥↑2) = 𝐵 ↔ ((√‘𝐵)↑2) = 𝐵)) |
26 | fveq2 6756 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (ℜ‘𝑥) = (ℜ‘(√‘𝐵))) | |
27 | 26 | breq2d 5082 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(√‘𝐵)))) |
28 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (i · 𝑥) = (i · (√‘𝐵))) | |
29 | neleq1 3053 | . . . . 5 ⊢ ((i · 𝑥) = (i · (√‘𝐵)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+)) | |
30 | 28, 29 | syl 17 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+)) |
31 | 25, 27, 30 | 3anbi123d 1434 | . . 3 ⊢ (𝑥 = (√‘𝐵) → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) |
32 | 23, 31 | rmoi 3820 | . 2 ⊢ ((∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ (𝐴 ∈ ℂ ∧ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) ∧ ((√‘𝐵) ∈ ℂ ∧ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) → 𝐴 = (√‘𝐵)) |
33 | 4, 5, 11, 13, 15, 32 | syl122anc 1377 | 1 ⊢ (𝜑 → 𝐴 = (√‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 ∃!wreu 3065 ∃*wrmo 3066 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 ici 10804 · cmul 10807 ≤ cle 10941 2c2 11958 ℝ+crp 12659 ↑cexp 13710 ℜcre 14736 √csqrt 14872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: eqsqrt2d 15008 cphsqrtcl2 24255 sqrtcval 41138 |
Copyright terms: Public domain | W3C validator |