MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsqrtd Structured version   Visualization version   GIF version

Theorem eqsqrtd 15386
Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.)
Hypotheses
Ref Expression
eqsqrtd.1 (𝜑𝐴 ∈ ℂ)
eqsqrtd.2 (𝜑𝐵 ∈ ℂ)
eqsqrtd.3 (𝜑 → (𝐴↑2) = 𝐵)
eqsqrtd.4 (𝜑 → 0 ≤ (ℜ‘𝐴))
eqsqrtd.5 (𝜑 → ¬ (i · 𝐴) ∈ ℝ+)
Assertion
Ref Expression
eqsqrtd (𝜑𝐴 = (√‘𝐵))

Proof of Theorem eqsqrtd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqsqrtd.2 . . 3 (𝜑𝐵 ∈ ℂ)
2 sqreu 15379 . . 3 (𝐵 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3 reurmo 3362 . . 3 (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
41, 2, 33syl 18 . 2 (𝜑 → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
5 eqsqrtd.1 . 2 (𝜑𝐴 ∈ ℂ)
6 eqsqrtd.3 . . 3 (𝜑 → (𝐴↑2) = 𝐵)
7 eqsqrtd.4 . . 3 (𝜑 → 0 ≤ (ℜ‘𝐴))
8 eqsqrtd.5 . . . 4 (𝜑 → ¬ (i · 𝐴) ∈ ℝ+)
9 df-nel 3037 . . . 4 ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+)
108, 9sylibr 234 . . 3 (𝜑 → (i · 𝐴) ∉ ℝ+)
116, 7, 103jca 1128 . 2 (𝜑 → ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+))
12 sqrtcl 15380 . . 3 (𝐵 ∈ ℂ → (√‘𝐵) ∈ ℂ)
131, 12syl 17 . 2 (𝜑 → (√‘𝐵) ∈ ℂ)
14 sqrtthlem 15381 . . 3 (𝐵 ∈ ℂ → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))
151, 14syl 17 . 2 (𝜑 → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))
16 oveq1 7412 . . . . 5 (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2))
1716eqeq1d 2737 . . . 4 (𝑥 = 𝐴 → ((𝑥↑2) = 𝐵 ↔ (𝐴↑2) = 𝐵))
18 fveq2 6876 . . . . 5 (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴))
1918breq2d 5131 . . . 4 (𝑥 = 𝐴 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝐴)))
20 oveq2 7413 . . . . 5 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21 neleq1 3042 . . . . 5 ((i · 𝑥) = (i · 𝐴) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
2220, 21syl 17 . . . 4 (𝑥 = 𝐴 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
2317, 19, 223anbi123d 1438 . . 3 (𝑥 = 𝐴 → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
24 oveq1 7412 . . . . 5 (𝑥 = (√‘𝐵) → (𝑥↑2) = ((√‘𝐵)↑2))
2524eqeq1d 2737 . . . 4 (𝑥 = (√‘𝐵) → ((𝑥↑2) = 𝐵 ↔ ((√‘𝐵)↑2) = 𝐵))
26 fveq2 6876 . . . . 5 (𝑥 = (√‘𝐵) → (ℜ‘𝑥) = (ℜ‘(√‘𝐵)))
2726breq2d 5131 . . . 4 (𝑥 = (√‘𝐵) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(√‘𝐵))))
28 oveq2 7413 . . . . 5 (𝑥 = (√‘𝐵) → (i · 𝑥) = (i · (√‘𝐵)))
29 neleq1 3042 . . . . 5 ((i · 𝑥) = (i · (√‘𝐵)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+))
3028, 29syl 17 . . . 4 (𝑥 = (√‘𝐵) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+))
3125, 27, 303anbi123d 1438 . . 3 (𝑥 = (√‘𝐵) → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)))
3223, 31rmoi 3866 . 2 ((∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ (𝐴 ∈ ℂ ∧ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) ∧ ((√‘𝐵) ∈ ℂ ∧ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) → 𝐴 = (√‘𝐵))
334, 5, 11, 13, 15, 32syl122anc 1381 1 (𝜑𝐴 = (√‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2108  wnel 3036  ∃!wreu 3357  ∃*wrmo 3358   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  ici 11131   · cmul 11134  cle 11270  2c2 12295  +crp 13008  cexp 14079  cre 15116  csqrt 15252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255
This theorem is referenced by:  eqsqrt2d  15387  cphsqrtcl2  25138  constrsqrtcl  33813  sqrtcval  43665
  Copyright terms: Public domain W3C validator