| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsqrtd | Structured version Visualization version GIF version | ||
| Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| eqsqrtd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| eqsqrtd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| eqsqrtd.3 | ⊢ (𝜑 → (𝐴↑2) = 𝐵) |
| eqsqrtd.4 | ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) |
| eqsqrtd.5 | ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) |
| Ref | Expression |
|---|---|
| eqsqrtd | ⊢ (𝜑 → 𝐴 = (√‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsqrtd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 2 | sqreu 15275 | . . 3 ⊢ (𝐵 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | |
| 3 | reurmo 3350 | . . 3 ⊢ (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) |
| 5 | eqsqrtd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 6 | eqsqrtd.3 | . . 3 ⊢ (𝜑 → (𝐴↑2) = 𝐵) | |
| 7 | eqsqrtd.4 | . . 3 ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) | |
| 8 | eqsqrtd.5 | . . . 4 ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) | |
| 9 | df-nel 3034 | . . . 4 ⊢ ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝜑 → (i · 𝐴) ∉ ℝ+) |
| 11 | 6, 7, 10 | 3jca 1128 | . 2 ⊢ (𝜑 → ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) |
| 12 | sqrtcl 15276 | . . 3 ⊢ (𝐵 ∈ ℂ → (√‘𝐵) ∈ ℂ) | |
| 13 | 1, 12 | syl 17 | . 2 ⊢ (𝜑 → (√‘𝐵) ∈ ℂ) |
| 14 | sqrtthlem 15277 | . . 3 ⊢ (𝐵 ∈ ℂ → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)) | |
| 15 | 1, 14 | syl 17 | . 2 ⊢ (𝜑 → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)) |
| 16 | oveq1 7362 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2)) | |
| 17 | 16 | eqeq1d 2735 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥↑2) = 𝐵 ↔ (𝐴↑2) = 𝐵)) |
| 18 | fveq2 6831 | . . . . 5 ⊢ (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴)) | |
| 19 | 18 | breq2d 5107 | . . . 4 ⊢ (𝑥 = 𝐴 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝐴))) |
| 20 | oveq2 7363 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
| 21 | neleq1 3039 | . . . . 5 ⊢ ((i · 𝑥) = (i · 𝐴) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+)) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝑥 = 𝐴 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+)) |
| 23 | 17, 19, 22 | 3anbi123d 1438 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+))) |
| 24 | oveq1 7362 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (𝑥↑2) = ((√‘𝐵)↑2)) | |
| 25 | 24 | eqeq1d 2735 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → ((𝑥↑2) = 𝐵 ↔ ((√‘𝐵)↑2) = 𝐵)) |
| 26 | fveq2 6831 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (ℜ‘𝑥) = (ℜ‘(√‘𝐵))) | |
| 27 | 26 | breq2d 5107 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(√‘𝐵)))) |
| 28 | oveq2 7363 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (i · 𝑥) = (i · (√‘𝐵))) | |
| 29 | neleq1 3039 | . . . . 5 ⊢ ((i · 𝑥) = (i · (√‘𝐵)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+)) | |
| 30 | 28, 29 | syl 17 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+)) |
| 31 | 25, 27, 30 | 3anbi123d 1438 | . . 3 ⊢ (𝑥 = (√‘𝐵) → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) |
| 32 | 23, 31 | rmoi 3838 | . 2 ⊢ ((∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ (𝐴 ∈ ℂ ∧ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) ∧ ((√‘𝐵) ∈ ℂ ∧ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) → 𝐴 = (√‘𝐵)) |
| 33 | 4, 5, 11, 13, 15, 32 | syl122anc 1381 | 1 ⊢ (𝜑 → 𝐴 = (√‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∉ wnel 3033 ∃!wreu 3345 ∃*wrmo 3346 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 0cc0 11017 ici 11019 · cmul 11022 ≤ cle 11158 2c2 12191 ℝ+crp 12896 ↑cexp 13975 ℜcre 15011 √csqrt 15147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 |
| This theorem is referenced by: eqsqrt2d 15283 cphsqrtcl2 25133 constrsqrtcl 33864 sqrtcval 43798 |
| Copyright terms: Public domain | W3C validator |