| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsqrtd | Structured version Visualization version GIF version | ||
| Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| eqsqrtd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| eqsqrtd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| eqsqrtd.3 | ⊢ (𝜑 → (𝐴↑2) = 𝐵) |
| eqsqrtd.4 | ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) |
| eqsqrtd.5 | ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) |
| Ref | Expression |
|---|---|
| eqsqrtd | ⊢ (𝜑 → 𝐴 = (√‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsqrtd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 2 | sqreu 15303 | . . 3 ⊢ (𝐵 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | |
| 3 | reurmo 3354 | . . 3 ⊢ (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) |
| 5 | eqsqrtd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 6 | eqsqrtd.3 | . . 3 ⊢ (𝜑 → (𝐴↑2) = 𝐵) | |
| 7 | eqsqrtd.4 | . . 3 ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) | |
| 8 | eqsqrtd.5 | . . . 4 ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) | |
| 9 | df-nel 3030 | . . . 4 ⊢ ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝜑 → (i · 𝐴) ∉ ℝ+) |
| 11 | 6, 7, 10 | 3jca 1128 | . 2 ⊢ (𝜑 → ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) |
| 12 | sqrtcl 15304 | . . 3 ⊢ (𝐵 ∈ ℂ → (√‘𝐵) ∈ ℂ) | |
| 13 | 1, 12 | syl 17 | . 2 ⊢ (𝜑 → (√‘𝐵) ∈ ℂ) |
| 14 | sqrtthlem 15305 | . . 3 ⊢ (𝐵 ∈ ℂ → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)) | |
| 15 | 1, 14 | syl 17 | . 2 ⊢ (𝜑 → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)) |
| 16 | oveq1 7376 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2)) | |
| 17 | 16 | eqeq1d 2731 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥↑2) = 𝐵 ↔ (𝐴↑2) = 𝐵)) |
| 18 | fveq2 6840 | . . . . 5 ⊢ (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴)) | |
| 19 | 18 | breq2d 5114 | . . . 4 ⊢ (𝑥 = 𝐴 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝐴))) |
| 20 | oveq2 7377 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
| 21 | neleq1 3035 | . . . . 5 ⊢ ((i · 𝑥) = (i · 𝐴) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+)) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝑥 = 𝐴 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+)) |
| 23 | 17, 19, 22 | 3anbi123d 1438 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+))) |
| 24 | oveq1 7376 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (𝑥↑2) = ((√‘𝐵)↑2)) | |
| 25 | 24 | eqeq1d 2731 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → ((𝑥↑2) = 𝐵 ↔ ((√‘𝐵)↑2) = 𝐵)) |
| 26 | fveq2 6840 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (ℜ‘𝑥) = (ℜ‘(√‘𝐵))) | |
| 27 | 26 | breq2d 5114 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(√‘𝐵)))) |
| 28 | oveq2 7377 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (i · 𝑥) = (i · (√‘𝐵))) | |
| 29 | neleq1 3035 | . . . . 5 ⊢ ((i · 𝑥) = (i · (√‘𝐵)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+)) | |
| 30 | 28, 29 | syl 17 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+)) |
| 31 | 25, 27, 30 | 3anbi123d 1438 | . . 3 ⊢ (𝑥 = (√‘𝐵) → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) |
| 32 | 23, 31 | rmoi 3851 | . 2 ⊢ ((∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ (𝐴 ∈ ℂ ∧ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) ∧ ((√‘𝐵) ∈ ℂ ∧ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) → 𝐴 = (√‘𝐵)) |
| 33 | 4, 5, 11, 13, 15, 32 | syl122anc 1381 | 1 ⊢ (𝜑 → 𝐴 = (√‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∃!wreu 3349 ∃*wrmo 3350 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 ici 11046 · cmul 11049 ≤ cle 11185 2c2 12217 ℝ+crp 12927 ↑cexp 14002 ℜcre 15039 √csqrt 15175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 |
| This theorem is referenced by: eqsqrt2d 15311 cphsqrtcl2 25062 constrsqrtcl 33742 sqrtcval 43603 |
| Copyright terms: Public domain | W3C validator |