MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsqrtd Structured version   Visualization version   GIF version

Theorem eqsqrtd 15270
Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.)
Hypotheses
Ref Expression
eqsqrtd.1 (𝜑𝐴 ∈ ℂ)
eqsqrtd.2 (𝜑𝐵 ∈ ℂ)
eqsqrtd.3 (𝜑 → (𝐴↑2) = 𝐵)
eqsqrtd.4 (𝜑 → 0 ≤ (ℜ‘𝐴))
eqsqrtd.5 (𝜑 → ¬ (i · 𝐴) ∈ ℝ+)
Assertion
Ref Expression
eqsqrtd (𝜑𝐴 = (√‘𝐵))

Proof of Theorem eqsqrtd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqsqrtd.2 . . 3 (𝜑𝐵 ∈ ℂ)
2 sqreu 15263 . . 3 (𝐵 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3 reurmo 3349 . . 3 (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
41, 2, 33syl 18 . 2 (𝜑 → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
5 eqsqrtd.1 . 2 (𝜑𝐴 ∈ ℂ)
6 eqsqrtd.3 . . 3 (𝜑 → (𝐴↑2) = 𝐵)
7 eqsqrtd.4 . . 3 (𝜑 → 0 ≤ (ℜ‘𝐴))
8 eqsqrtd.5 . . . 4 (𝜑 → ¬ (i · 𝐴) ∈ ℝ+)
9 df-nel 3033 . . . 4 ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+)
108, 9sylibr 234 . . 3 (𝜑 → (i · 𝐴) ∉ ℝ+)
116, 7, 103jca 1128 . 2 (𝜑 → ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+))
12 sqrtcl 15264 . . 3 (𝐵 ∈ ℂ → (√‘𝐵) ∈ ℂ)
131, 12syl 17 . 2 (𝜑 → (√‘𝐵) ∈ ℂ)
14 sqrtthlem 15265 . . 3 (𝐵 ∈ ℂ → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))
151, 14syl 17 . 2 (𝜑 → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))
16 oveq1 7348 . . . . 5 (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2))
1716eqeq1d 2733 . . . 4 (𝑥 = 𝐴 → ((𝑥↑2) = 𝐵 ↔ (𝐴↑2) = 𝐵))
18 fveq2 6817 . . . . 5 (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴))
1918breq2d 5098 . . . 4 (𝑥 = 𝐴 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝐴)))
20 oveq2 7349 . . . . 5 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21 neleq1 3038 . . . . 5 ((i · 𝑥) = (i · 𝐴) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
2220, 21syl 17 . . . 4 (𝑥 = 𝐴 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
2317, 19, 223anbi123d 1438 . . 3 (𝑥 = 𝐴 → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
24 oveq1 7348 . . . . 5 (𝑥 = (√‘𝐵) → (𝑥↑2) = ((√‘𝐵)↑2))
2524eqeq1d 2733 . . . 4 (𝑥 = (√‘𝐵) → ((𝑥↑2) = 𝐵 ↔ ((√‘𝐵)↑2) = 𝐵))
26 fveq2 6817 . . . . 5 (𝑥 = (√‘𝐵) → (ℜ‘𝑥) = (ℜ‘(√‘𝐵)))
2726breq2d 5098 . . . 4 (𝑥 = (√‘𝐵) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(√‘𝐵))))
28 oveq2 7349 . . . . 5 (𝑥 = (√‘𝐵) → (i · 𝑥) = (i · (√‘𝐵)))
29 neleq1 3038 . . . . 5 ((i · 𝑥) = (i · (√‘𝐵)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+))
3028, 29syl 17 . . . 4 (𝑥 = (√‘𝐵) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+))
3125, 27, 303anbi123d 1438 . . 3 (𝑥 = (√‘𝐵) → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)))
3223, 31rmoi 3837 . 2 ((∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ (𝐴 ∈ ℂ ∧ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) ∧ ((√‘𝐵) ∈ ℂ ∧ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) → 𝐴 = (√‘𝐵))
334, 5, 11, 13, 15, 32syl122anc 1381 1 (𝜑𝐴 = (√‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  wnel 3032  ∃!wreu 3344  ∃*wrmo 3345   class class class wbr 5086  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  ici 11003   · cmul 11006  cle 11142  2c2 12175  +crp 12885  cexp 13963  cre 14999  csqrt 15135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138
This theorem is referenced by:  eqsqrt2d  15271  cphsqrtcl2  25108  constrsqrtcl  33784  sqrtcval  43674
  Copyright terms: Public domain W3C validator