MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsqrtd Structured version   Visualization version   GIF version

Theorem eqsqrtd 15294
Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.)
Hypotheses
Ref Expression
eqsqrtd.1 (𝜑𝐴 ∈ ℂ)
eqsqrtd.2 (𝜑𝐵 ∈ ℂ)
eqsqrtd.3 (𝜑 → (𝐴↑2) = 𝐵)
eqsqrtd.4 (𝜑 → 0 ≤ (ℜ‘𝐴))
eqsqrtd.5 (𝜑 → ¬ (i · 𝐴) ∈ ℝ+)
Assertion
Ref Expression
eqsqrtd (𝜑𝐴 = (√‘𝐵))

Proof of Theorem eqsqrtd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqsqrtd.2 . . 3 (𝜑𝐵 ∈ ℂ)
2 sqreu 15287 . . 3 (𝐵 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3 reurmo 3348 . . 3 (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
41, 2, 33syl 18 . 2 (𝜑 → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
5 eqsqrtd.1 . 2 (𝜑𝐴 ∈ ℂ)
6 eqsqrtd.3 . . 3 (𝜑 → (𝐴↑2) = 𝐵)
7 eqsqrtd.4 . . 3 (𝜑 → 0 ≤ (ℜ‘𝐴))
8 eqsqrtd.5 . . . 4 (𝜑 → ¬ (i · 𝐴) ∈ ℝ+)
9 df-nel 3030 . . . 4 ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+)
108, 9sylibr 234 . . 3 (𝜑 → (i · 𝐴) ∉ ℝ+)
116, 7, 103jca 1128 . 2 (𝜑 → ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+))
12 sqrtcl 15288 . . 3 (𝐵 ∈ ℂ → (√‘𝐵) ∈ ℂ)
131, 12syl 17 . 2 (𝜑 → (√‘𝐵) ∈ ℂ)
14 sqrtthlem 15289 . . 3 (𝐵 ∈ ℂ → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))
151, 14syl 17 . 2 (𝜑 → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))
16 oveq1 7360 . . . . 5 (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2))
1716eqeq1d 2731 . . . 4 (𝑥 = 𝐴 → ((𝑥↑2) = 𝐵 ↔ (𝐴↑2) = 𝐵))
18 fveq2 6826 . . . . 5 (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴))
1918breq2d 5107 . . . 4 (𝑥 = 𝐴 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝐴)))
20 oveq2 7361 . . . . 5 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21 neleq1 3035 . . . . 5 ((i · 𝑥) = (i · 𝐴) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
2220, 21syl 17 . . . 4 (𝑥 = 𝐴 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
2317, 19, 223anbi123d 1438 . . 3 (𝑥 = 𝐴 → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
24 oveq1 7360 . . . . 5 (𝑥 = (√‘𝐵) → (𝑥↑2) = ((√‘𝐵)↑2))
2524eqeq1d 2731 . . . 4 (𝑥 = (√‘𝐵) → ((𝑥↑2) = 𝐵 ↔ ((√‘𝐵)↑2) = 𝐵))
26 fveq2 6826 . . . . 5 (𝑥 = (√‘𝐵) → (ℜ‘𝑥) = (ℜ‘(√‘𝐵)))
2726breq2d 5107 . . . 4 (𝑥 = (√‘𝐵) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(√‘𝐵))))
28 oveq2 7361 . . . . 5 (𝑥 = (√‘𝐵) → (i · 𝑥) = (i · (√‘𝐵)))
29 neleq1 3035 . . . . 5 ((i · 𝑥) = (i · (√‘𝐵)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+))
3028, 29syl 17 . . . 4 (𝑥 = (√‘𝐵) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+))
3125, 27, 303anbi123d 1438 . . 3 (𝑥 = (√‘𝐵) → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)))
3223, 31rmoi 3845 . 2 ((∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ (𝐴 ∈ ℂ ∧ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) ∧ ((√‘𝐵) ∈ ℂ ∧ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) → 𝐴 = (√‘𝐵))
334, 5, 11, 13, 15, 32syl122anc 1381 1 (𝜑𝐴 = (√‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wnel 3029  ∃!wreu 3343  ∃*wrmo 3344   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  ici 11030   · cmul 11033  cle 11169  2c2 12202  +crp 12912  cexp 13987  cre 15023  csqrt 15159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-seq 13928  df-exp 13988  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162
This theorem is referenced by:  eqsqrt2d  15295  cphsqrtcl2  25103  constrsqrtcl  33765  sqrtcval  43634
  Copyright terms: Public domain W3C validator