Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proot1mul Structured version   Visualization version   GIF version

Theorem proot1mul 40756
Description: Any primitive 𝑁-th root of unity is a multiple of any other. (Contributed by Stefan O'Rear, 2-Nov-2015.)
Hypotheses
Ref Expression
idomsubgmo.g 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
proot1mul.o 𝑂 = (od‘𝐺)
proot1mul.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
proot1mul (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑋 ∈ (𝐾‘{𝑌}))

Proof of Theorem proot1mul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 767 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑅 ∈ IDomn)
2 isidom 20367 . . . . . . 7 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
32simprbi 500 . . . . . 6 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
4 domnring 20359 . . . . . 6 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
5 eqid 2738 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
6 idomsubgmo.g . . . . . . 7 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
75, 6unitgrp 19710 . . . . . 6 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
81, 3, 4, 74syl 19 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝐺 ∈ Grp)
9 eqid 2738 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
109subgacs 18602 . . . . 5 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
11 acsmre 17180 . . . . 5 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
128, 10, 113syl 18 . . . 4 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
13 proot1mul.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
14 simprl 771 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑋 ∈ (𝑂 “ {𝑁}))
15 proot1mul.o . . . . . . . . 9 𝑂 = (od‘𝐺)
169, 15odf 18954 . . . . . . . 8 𝑂:(Base‘𝐺)⟶ℕ0
17 ffn 6564 . . . . . . . 8 (𝑂:(Base‘𝐺)⟶ℕ0𝑂 Fn (Base‘𝐺))
18 fniniseg 6899 . . . . . . . 8 (𝑂 Fn (Base‘𝐺) → (𝑋 ∈ (𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁)))
1916, 17, 18mp2b 10 . . . . . . 7 (𝑋 ∈ (𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁))
2014, 19sylib 221 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁))
2120simpld 498 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑋 ∈ (Base‘𝐺))
2221snssd 4737 . . . 4 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → {𝑋} ⊆ (Base‘𝐺))
2312, 13, 22mrcssidd 17153 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → {𝑋} ⊆ (𝐾‘{𝑋}))
24 snssg 4713 . . . 4 (𝑋 ∈ (𝑂 “ {𝑁}) → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋})))
2514, 24syl 17 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋})))
2623, 25mpbird 260 . 2 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑋 ∈ (𝐾‘{𝑋}))
276idomsubgmo 40755 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∃*𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝑁)
2827adantr 484 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → ∃*𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝑁)
2913mrccl 17139 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ {𝑋} ⊆ (Base‘𝐺)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺))
3012, 22, 29syl2anc 587 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺))
3120simprd 499 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝑂𝑋) = 𝑁)
32 simplr 769 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑁 ∈ ℕ)
3331, 32eqeltrd 2839 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝑂𝑋) ∈ ℕ)
349, 15, 13odhash2 18989 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) ∈ ℕ) → (♯‘(𝐾‘{𝑋})) = (𝑂𝑋))
358, 21, 33, 34syl3anc 1373 . . . 4 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (♯‘(𝐾‘{𝑋})) = (𝑂𝑋))
3635, 31eqtrd 2778 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (♯‘(𝐾‘{𝑋})) = 𝑁)
37 simprr 773 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑌 ∈ (𝑂 “ {𝑁}))
38 fniniseg 6899 . . . . . . . 8 (𝑂 Fn (Base‘𝐺) → (𝑌 ∈ (𝑂 “ {𝑁}) ↔ (𝑌 ∈ (Base‘𝐺) ∧ (𝑂𝑌) = 𝑁)))
3916, 17, 38mp2b 10 . . . . . . 7 (𝑌 ∈ (𝑂 “ {𝑁}) ↔ (𝑌 ∈ (Base‘𝐺) ∧ (𝑂𝑌) = 𝑁))
4037, 39sylib 221 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝑌 ∈ (Base‘𝐺) ∧ (𝑂𝑌) = 𝑁))
4140simpld 498 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑌 ∈ (Base‘𝐺))
4241snssd 4737 . . . 4 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → {𝑌} ⊆ (Base‘𝐺))
4313mrccl 17139 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ {𝑌} ⊆ (Base‘𝐺)) → (𝐾‘{𝑌}) ∈ (SubGrp‘𝐺))
4412, 42, 43syl2anc 587 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝐾‘{𝑌}) ∈ (SubGrp‘𝐺))
4540simprd 499 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝑂𝑌) = 𝑁)
4645, 32eqeltrd 2839 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝑂𝑌) ∈ ℕ)
479, 15, 13odhash2 18989 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ (Base‘𝐺) ∧ (𝑂𝑌) ∈ ℕ) → (♯‘(𝐾‘{𝑌})) = (𝑂𝑌))
488, 41, 46, 47syl3anc 1373 . . . 4 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (♯‘(𝐾‘{𝑌})) = (𝑂𝑌))
4948, 45eqtrd 2778 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (♯‘(𝐾‘{𝑌})) = 𝑁)
50 fveqeq2 6745 . . . 4 (𝑥 = (𝐾‘{𝑋}) → ((♯‘𝑥) = 𝑁 ↔ (♯‘(𝐾‘{𝑋})) = 𝑁))
51 fveqeq2 6745 . . . 4 (𝑥 = (𝐾‘{𝑌}) → ((♯‘𝑥) = 𝑁 ↔ (♯‘(𝐾‘{𝑌})) = 𝑁))
5250, 51rmoi 3818 . . 3 ((∃*𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝑁 ∧ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (♯‘(𝐾‘{𝑋})) = 𝑁) ∧ ((𝐾‘{𝑌}) ∈ (SubGrp‘𝐺) ∧ (♯‘(𝐾‘{𝑌})) = 𝑁)) → (𝐾‘{𝑋}) = (𝐾‘{𝑌}))
5328, 30, 36, 44, 49, 52syl122anc 1381 . 2 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝐾‘{𝑋}) = (𝐾‘{𝑌}))
5426, 53eleqtrd 2841 1 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑋 ∈ (𝐾‘{𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2111  ∃*wrmo 3065  wss 3881  {csn 4556  ccnv 5565  cima 5569   Fn wfn 6393  wf 6394  cfv 6398  (class class class)co 7232  cn 11855  0cn0 12115  chash 13921  Basecbs 16785  s cress 16809  Moorecmre 17110  mrClscmrc 17111  ACScacs 17113  Grpcgrp 18390  SubGrpcsubg 18562  odcod 18941  mulGrpcmgp 19529  Ringcrg 19587  CRingccrg 19588  Unitcui 19682  Domncdomn 20343  IDomncidom 20344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-inf2 9281  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831  ax-pre-sup 10832  ax-addf 10833  ax-mulf 10834
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-iin 4922  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-se 5525  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-isom 6407  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-of 7488  df-ofr 7489  df-om 7664  df-1st 7780  df-2nd 7781  df-supp 7925  df-tpos 7989  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-oadd 8227  df-omul 8228  df-er 8412  df-ec 8414  df-qs 8418  df-map 8531  df-pm 8532  df-ixp 8600  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-fsupp 9011  df-sup 9083  df-inf 9084  df-oi 9151  df-dju 9542  df-card 9580  df-acn 9583  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-div 11515  df-nn 11856  df-2 11918  df-3 11919  df-4 11920  df-5 11921  df-6 11922  df-7 11923  df-8 11924  df-9 11925  df-n0 12116  df-xnn0 12188  df-z 12202  df-dec 12319  df-uz 12464  df-rp 12612  df-fz 13121  df-fzo 13264  df-fl 13392  df-mod 13468  df-seq 13600  df-exp 13661  df-hash 13922  df-cj 14687  df-re 14688  df-im 14689  df-sqrt 14823  df-abs 14824  df-clim 15074  df-sum 15275  df-dvds 15841  df-struct 16725  df-sets 16742  df-slot 16760  df-ndx 16770  df-base 16786  df-ress 16810  df-plusg 16840  df-mulr 16841  df-starv 16842  df-sca 16843  df-vsca 16844  df-ip 16845  df-tset 16846  df-ple 16847  df-ds 16849  df-unif 16850  df-hom 16851  df-cco 16852  df-0g 16971  df-gsum 16972  df-prds 16977  df-pws 16979  df-mre 17114  df-mrc 17115  df-acs 17117  df-mgm 18139  df-sgrp 18188  df-mnd 18199  df-mhm 18243  df-submnd 18244  df-grp 18393  df-minusg 18394  df-sbg 18395  df-mulg 18514  df-subg 18565  df-eqg 18567  df-ghm 18645  df-cntz 18736  df-od 18945  df-cmn 19197  df-abl 19198  df-mgp 19530  df-ur 19542  df-srg 19546  df-ring 19589  df-cring 19590  df-oppr 19666  df-dvdsr 19684  df-unit 19685  df-invr 19715  df-rnghom 19760  df-subrg 19823  df-lmod 19926  df-lss 19994  df-lsp 20034  df-nzr 20321  df-rlreg 20346  df-domn 20347  df-idom 20348  df-cnfld 20389  df-assa 20840  df-asp 20841  df-ascl 20842  df-psr 20892  df-mvr 20893  df-mpl 20894  df-opsr 20896  df-evls 21056  df-evl 21057  df-psr1 21125  df-vr1 21126  df-ply1 21127  df-coe1 21128  df-evl1 21256  df-mdeg 24974  df-deg1 24975  df-mon1 25052  df-uc1p 25053  df-q1p 25054  df-r1p 25055
This theorem is referenced by:  proot1hash  40757
  Copyright terms: Public domain W3C validator