Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proot1mul Structured version   Visualization version   GIF version

Theorem proot1mul 38620
Description: Any primitive 𝑁-th root of unity is a multiple of any other. (Contributed by Stefan O'Rear, 2-Nov-2015.)
Hypotheses
Ref Expression
idomsubgmo.g 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
proot1mul.o 𝑂 = (od‘𝐺)
proot1mul.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
proot1mul (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑋 ∈ (𝐾‘{𝑌}))

Proof of Theorem proot1mul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 785 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑅 ∈ IDomn)
2 isidom 19665 . . . . . . 7 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
32simprbi 492 . . . . . 6 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
4 domnring 19657 . . . . . 6 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
5 eqid 2825 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
6 idomsubgmo.g . . . . . . 7 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
75, 6unitgrp 19021 . . . . . 6 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
81, 3, 4, 74syl 19 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝐺 ∈ Grp)
9 eqid 2825 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
109subgacs 17980 . . . . 5 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
11 acsmre 16665 . . . . 5 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
128, 10, 113syl 18 . . . 4 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
13 proot1mul.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
14 simprl 789 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑋 ∈ (𝑂 “ {𝑁}))
15 proot1mul.o . . . . . . . . 9 𝑂 = (od‘𝐺)
169, 15odf 18307 . . . . . . . 8 𝑂:(Base‘𝐺)⟶ℕ0
17 ffn 6278 . . . . . . . 8 (𝑂:(Base‘𝐺)⟶ℕ0𝑂 Fn (Base‘𝐺))
18 fniniseg 6587 . . . . . . . 8 (𝑂 Fn (Base‘𝐺) → (𝑋 ∈ (𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁)))
1916, 17, 18mp2b 10 . . . . . . 7 (𝑋 ∈ (𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁))
2014, 19sylib 210 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁))
2120simpld 490 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑋 ∈ (Base‘𝐺))
2221snssd 4558 . . . 4 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → {𝑋} ⊆ (Base‘𝐺))
2312, 13, 22mrcssidd 16638 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → {𝑋} ⊆ (𝐾‘{𝑋}))
24 snssg 4534 . . . 4 (𝑋 ∈ (𝑂 “ {𝑁}) → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋})))
2514, 24syl 17 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋})))
2623, 25mpbird 249 . 2 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑋 ∈ (𝐾‘{𝑋}))
276idomsubgmo 38619 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∃*𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝑁)
2827adantr 474 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → ∃*𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝑁)
2913mrccl 16624 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ {𝑋} ⊆ (Base‘𝐺)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺))
3012, 22, 29syl2anc 581 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐺))
3120simprd 491 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝑂𝑋) = 𝑁)
32 simplr 787 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑁 ∈ ℕ)
3331, 32eqeltrd 2906 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝑂𝑋) ∈ ℕ)
349, 15, 13odhash2 18341 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) ∈ ℕ) → (♯‘(𝐾‘{𝑋})) = (𝑂𝑋))
358, 21, 33, 34syl3anc 1496 . . . 4 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (♯‘(𝐾‘{𝑋})) = (𝑂𝑋))
3635, 31eqtrd 2861 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (♯‘(𝐾‘{𝑋})) = 𝑁)
37 simprr 791 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑌 ∈ (𝑂 “ {𝑁}))
38 fniniseg 6587 . . . . . . . 8 (𝑂 Fn (Base‘𝐺) → (𝑌 ∈ (𝑂 “ {𝑁}) ↔ (𝑌 ∈ (Base‘𝐺) ∧ (𝑂𝑌) = 𝑁)))
3916, 17, 38mp2b 10 . . . . . . 7 (𝑌 ∈ (𝑂 “ {𝑁}) ↔ (𝑌 ∈ (Base‘𝐺) ∧ (𝑂𝑌) = 𝑁))
4037, 39sylib 210 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝑌 ∈ (Base‘𝐺) ∧ (𝑂𝑌) = 𝑁))
4140simpld 490 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑌 ∈ (Base‘𝐺))
4241snssd 4558 . . . 4 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → {𝑌} ⊆ (Base‘𝐺))
4313mrccl 16624 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ {𝑌} ⊆ (Base‘𝐺)) → (𝐾‘{𝑌}) ∈ (SubGrp‘𝐺))
4412, 42, 43syl2anc 581 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝐾‘{𝑌}) ∈ (SubGrp‘𝐺))
4540simprd 491 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝑂𝑌) = 𝑁)
4645, 32eqeltrd 2906 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝑂𝑌) ∈ ℕ)
479, 15, 13odhash2 18341 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ (Base‘𝐺) ∧ (𝑂𝑌) ∈ ℕ) → (♯‘(𝐾‘{𝑌})) = (𝑂𝑌))
488, 41, 46, 47syl3anc 1496 . . . 4 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (♯‘(𝐾‘{𝑌})) = (𝑂𝑌))
4948, 45eqtrd 2861 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (♯‘(𝐾‘{𝑌})) = 𝑁)
50 fveqeq2 6442 . . . 4 (𝑥 = (𝐾‘{𝑋}) → ((♯‘𝑥) = 𝑁 ↔ (♯‘(𝐾‘{𝑋})) = 𝑁))
51 fveqeq2 6442 . . . 4 (𝑥 = (𝐾‘{𝑌}) → ((♯‘𝑥) = 𝑁 ↔ (♯‘(𝐾‘{𝑌})) = 𝑁))
5250, 51rmoi 3754 . . 3 ((∃*𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝑁 ∧ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐺) ∧ (♯‘(𝐾‘{𝑋})) = 𝑁) ∧ ((𝐾‘{𝑌}) ∈ (SubGrp‘𝐺) ∧ (♯‘(𝐾‘{𝑌})) = 𝑁)) → (𝐾‘{𝑋}) = (𝐾‘{𝑌}))
5328, 30, 36, 44, 49, 52syl122anc 1504 . 2 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → (𝐾‘{𝑋}) = (𝐾‘{𝑌}))
5426, 53eleqtrd 2908 1 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑋 ∈ (𝐾‘{𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  ∃*wrmo 3120  wss 3798  {csn 4397  ccnv 5341  cima 5345   Fn wfn 6118  wf 6119  cfv 6123  (class class class)co 6905  cn 11350  0cn0 11618  chash 13410  Basecbs 16222  s cress 16223  Moorecmre 16595  mrClscmrc 16596  ACScacs 16598  Grpcgrp 17776  SubGrpcsubg 17939  odcod 18295  mulGrpcmgp 18843  Ringcrg 18901  CRingccrg 18902  Unitcui 18993  Domncdomn 19641  IDomncidom 19642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-disj 4842  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-ofr 7158  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-tpos 7617  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-omul 7831  df-er 8009  df-ec 8011  df-qs 8015  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-acn 9081  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-xnn0 11691  df-z 11705  df-dec 11822  df-uz 11969  df-rp 12113  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794  df-dvds 15358  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-0g 16455  df-gsum 16456  df-prds 16461  df-pws 16463  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-submnd 17689  df-grp 17779  df-minusg 17780  df-sbg 17781  df-mulg 17895  df-subg 17942  df-eqg 17944  df-ghm 18009  df-cntz 18100  df-od 18299  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-srg 18860  df-ring 18903  df-cring 18904  df-oppr 18977  df-dvdsr 18995  df-unit 18996  df-invr 19026  df-rnghom 19071  df-subrg 19134  df-lmod 19221  df-lss 19289  df-lsp 19331  df-nzr 19619  df-rlreg 19644  df-domn 19645  df-idom 19646  df-assa 19673  df-asp 19674  df-ascl 19675  df-psr 19717  df-mvr 19718  df-mpl 19719  df-opsr 19721  df-evls 19866  df-evl 19867  df-psr1 19910  df-vr1 19911  df-ply1 19912  df-coe1 19913  df-evl1 20041  df-cnfld 20107  df-mdeg 24214  df-deg1 24215  df-mon1 24289  df-uc1p 24290  df-q1p 24291  df-r1p 24292
This theorem is referenced by:  proot1hash  38621
  Copyright terms: Public domain W3C validator