MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpcyg Structured version   Visualization version   GIF version

Theorem frgpcyg 21348
Description: A free group is cyclic iff it has zero or one generator. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 18-Apr-2021.)
Hypothesis
Ref Expression
frgpcyg.g 𝐺 = (freeGrpβ€˜πΌ)
Assertion
Ref Expression
frgpcyg (𝐼 β‰Ό 1o ↔ 𝐺 ∈ CycGrp)

Proof of Theorem frgpcyg
Dummy variables 𝑓 𝑔 𝑛 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 8980 . . 3 (𝐼 β‰Ό 1o ↔ (𝐼 β‰Ί 1o ∨ 𝐼 β‰ˆ 1o))
2 sdom1 9244 . . . . 5 (𝐼 β‰Ί 1o ↔ 𝐼 = βˆ…)
3 frgpcyg.g . . . . . . 7 𝐺 = (freeGrpβ€˜πΌ)
4 fveq2 6890 . . . . . . 7 (𝐼 = βˆ… β†’ (freeGrpβ€˜πΌ) = (freeGrpβ€˜βˆ…))
53, 4eqtrid 2782 . . . . . 6 (𝐼 = βˆ… β†’ 𝐺 = (freeGrpβ€˜βˆ…))
6 0ex 5306 . . . . . . . 8 βˆ… ∈ V
7 eqid 2730 . . . . . . . . 9 (freeGrpβ€˜βˆ…) = (freeGrpβ€˜βˆ…)
87frgpgrp 19671 . . . . . . . 8 (βˆ… ∈ V β†’ (freeGrpβ€˜βˆ…) ∈ Grp)
96, 8ax-mp 5 . . . . . . 7 (freeGrpβ€˜βˆ…) ∈ Grp
10 eqid 2730 . . . . . . . 8 (Baseβ€˜(freeGrpβ€˜βˆ…)) = (Baseβ€˜(freeGrpβ€˜βˆ…))
117, 100frgp 19688 . . . . . . 7 (Baseβ€˜(freeGrpβ€˜βˆ…)) β‰ˆ 1o
12100cyg 19802 . . . . . . 7 (((freeGrpβ€˜βˆ…) ∈ Grp ∧ (Baseβ€˜(freeGrpβ€˜βˆ…)) β‰ˆ 1o) β†’ (freeGrpβ€˜βˆ…) ∈ CycGrp)
139, 11, 12mp2an 688 . . . . . 6 (freeGrpβ€˜βˆ…) ∈ CycGrp
145, 13eqeltrdi 2839 . . . . 5 (𝐼 = βˆ… β†’ 𝐺 ∈ CycGrp)
152, 14sylbi 216 . . . 4 (𝐼 β‰Ί 1o β†’ 𝐺 ∈ CycGrp)
16 eqid 2730 . . . . 5 (Baseβ€˜πΊ) = (Baseβ€˜πΊ)
17 eqid 2730 . . . . 5 (.gβ€˜πΊ) = (.gβ€˜πΊ)
18 relen 8946 . . . . . . 7 Rel β‰ˆ
1918brrelex1i 5731 . . . . . 6 (𝐼 β‰ˆ 1o β†’ 𝐼 ∈ V)
203frgpgrp 19671 . . . . . 6 (𝐼 ∈ V β†’ 𝐺 ∈ Grp)
2119, 20syl 17 . . . . 5 (𝐼 β‰ˆ 1o β†’ 𝐺 ∈ Grp)
22 eqid 2730 . . . . . . . 8 ( ~FG β€˜πΌ) = ( ~FG β€˜πΌ)
23 eqid 2730 . . . . . . . 8 (varFGrpβ€˜πΌ) = (varFGrpβ€˜πΌ)
2422, 23, 3, 16vrgpf 19677 . . . . . . 7 (𝐼 ∈ V β†’ (varFGrpβ€˜πΌ):𝐼⟢(Baseβ€˜πΊ))
2519, 24syl 17 . . . . . 6 (𝐼 β‰ˆ 1o β†’ (varFGrpβ€˜πΌ):𝐼⟢(Baseβ€˜πΊ))
26 en1uniel 9030 . . . . . 6 (𝐼 β‰ˆ 1o β†’ βˆͺ 𝐼 ∈ 𝐼)
2725, 26ffvelcdmd 7086 . . . . 5 (𝐼 β‰ˆ 1o β†’ ((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼) ∈ (Baseβ€˜πΊ))
28 zringgrp 21223 . . . . . . . . 9 β„€ring ∈ Grp
2919uniexd 7734 . . . . . . . . . . 11 (𝐼 β‰ˆ 1o β†’ βˆͺ 𝐼 ∈ V)
30 1zzd 12597 . . . . . . . . . . 11 (𝐼 β‰ˆ 1o β†’ 1 ∈ β„€)
3129, 30fsnd 6875 . . . . . . . . . 10 (𝐼 β‰ˆ 1o β†’ {⟨βˆͺ 𝐼, 1⟩}:{βˆͺ 𝐼}βŸΆβ„€)
32 en1b 9025 . . . . . . . . . . . 12 (𝐼 β‰ˆ 1o ↔ 𝐼 = {βˆͺ 𝐼})
3332biimpi 215 . . . . . . . . . . 11 (𝐼 β‰ˆ 1o β†’ 𝐼 = {βˆͺ 𝐼})
3433feq2d 6702 . . . . . . . . . 10 (𝐼 β‰ˆ 1o β†’ ({⟨βˆͺ 𝐼, 1⟩}:πΌβŸΆβ„€ ↔ {⟨βˆͺ 𝐼, 1⟩}:{βˆͺ 𝐼}βŸΆβ„€))
3531, 34mpbird 256 . . . . . . . . 9 (𝐼 β‰ˆ 1o β†’ {⟨βˆͺ 𝐼, 1⟩}:πΌβŸΆβ„€)
36 zringbas 21224 . . . . . . . . . 10 β„€ = (Baseβ€˜β„€ring)
373, 36, 23frgpup3 19687 . . . . . . . . 9 ((β„€ring ∈ Grp ∧ 𝐼 ∈ V ∧ {⟨βˆͺ 𝐼, 1⟩}:πΌβŸΆβ„€) β†’ βˆƒ!𝑓 ∈ (𝐺 GrpHom β„€ring)(𝑓 ∘ (varFGrpβ€˜πΌ)) = {⟨βˆͺ 𝐼, 1⟩})
3828, 19, 35, 37mp3an2i 1464 . . . . . . . 8 (𝐼 β‰ˆ 1o β†’ βˆƒ!𝑓 ∈ (𝐺 GrpHom β„€ring)(𝑓 ∘ (varFGrpβ€˜πΌ)) = {⟨βˆͺ 𝐼, 1⟩})
3938adantr 479 . . . . . . 7 ((𝐼 β‰ˆ 1o ∧ π‘₯ ∈ (Baseβ€˜πΊ)) β†’ βˆƒ!𝑓 ∈ (𝐺 GrpHom β„€ring)(𝑓 ∘ (varFGrpβ€˜πΌ)) = {⟨βˆͺ 𝐼, 1⟩})
40 reurex 3378 . . . . . . 7 (βˆƒ!𝑓 ∈ (𝐺 GrpHom β„€ring)(𝑓 ∘ (varFGrpβ€˜πΌ)) = {⟨βˆͺ 𝐼, 1⟩} β†’ βˆƒπ‘“ ∈ (𝐺 GrpHom β„€ring)(𝑓 ∘ (varFGrpβ€˜πΌ)) = {⟨βˆͺ 𝐼, 1⟩})
4139, 40syl 17 . . . . . 6 ((𝐼 β‰ˆ 1o ∧ π‘₯ ∈ (Baseβ€˜πΊ)) β†’ βˆƒπ‘“ ∈ (𝐺 GrpHom β„€ring)(𝑓 ∘ (varFGrpβ€˜πΌ)) = {⟨βˆͺ 𝐼, 1⟩})
42 fveq1 6889 . . . . . . . . . 10 ((𝑓 ∘ (varFGrpβ€˜πΌ)) = {⟨βˆͺ 𝐼, 1⟩} β†’ ((𝑓 ∘ (varFGrpβ€˜πΌ))β€˜βˆͺ 𝐼) = ({⟨βˆͺ 𝐼, 1⟩}β€˜βˆͺ 𝐼))
4325, 26fvco3d 6990 . . . . . . . . . . 11 (𝐼 β‰ˆ 1o β†’ ((𝑓 ∘ (varFGrpβ€˜πΌ))β€˜βˆͺ 𝐼) = (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
44 1z 12596 . . . . . . . . . . . 12 1 ∈ β„€
45 fvsng 7179 . . . . . . . . . . . 12 ((βˆͺ 𝐼 ∈ V ∧ 1 ∈ β„€) β†’ ({⟨βˆͺ 𝐼, 1⟩}β€˜βˆͺ 𝐼) = 1)
4629, 44, 45sylancl 584 . . . . . . . . . . 11 (𝐼 β‰ˆ 1o β†’ ({⟨βˆͺ 𝐼, 1⟩}β€˜βˆͺ 𝐼) = 1)
4743, 46eqeq12d 2746 . . . . . . . . . 10 (𝐼 β‰ˆ 1o β†’ (((𝑓 ∘ (varFGrpβ€˜πΌ))β€˜βˆͺ 𝐼) = ({⟨βˆͺ 𝐼, 1⟩}β€˜βˆͺ 𝐼) ↔ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1))
4842, 47imbitrid 243 . . . . . . . . 9 (𝐼 β‰ˆ 1o β†’ ((𝑓 ∘ (varFGrpβ€˜πΌ)) = {⟨βˆͺ 𝐼, 1⟩} β†’ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1))
4948ad2antrr 722 . . . . . . . 8 (((𝐼 β‰ˆ 1o ∧ π‘₯ ∈ (Baseβ€˜πΊ)) ∧ 𝑓 ∈ (𝐺 GrpHom β„€ring)) β†’ ((𝑓 ∘ (varFGrpβ€˜πΌ)) = {⟨βˆͺ 𝐼, 1⟩} β†’ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1))
5016, 36ghmf 19134 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐺 GrpHom β„€ring) β†’ 𝑓:(Baseβ€˜πΊ)βŸΆβ„€)
5150ad2antrl 724 . . . . . . . . . . . 12 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ 𝑓:(Baseβ€˜πΊ)βŸΆβ„€)
5251ffvelcdmda 7085 . . . . . . . . . . 11 (((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) ∧ π‘₯ ∈ (Baseβ€˜πΊ)) β†’ (π‘“β€˜π‘₯) ∈ β„€)
5352an32s 648 . . . . . . . . . 10 (((𝐼 β‰ˆ 1o ∧ π‘₯ ∈ (Baseβ€˜πΊ)) ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (π‘“β€˜π‘₯) ∈ β„€)
54 mptresid 6049 . . . . . . . . . . . . . 14 ( I β†Ύ (Baseβ€˜πΊ)) = (π‘₯ ∈ (Baseβ€˜πΊ) ↦ π‘₯)
553, 16, 23frgpup3 19687 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝐼 ∈ V ∧ (varFGrpβ€˜πΌ):𝐼⟢(Baseβ€˜πΊ)) β†’ βˆƒ!𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ))
5621, 19, 25, 55syl3anc 1369 . . . . . . . . . . . . . . . . 17 (𝐼 β‰ˆ 1o β†’ βˆƒ!𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ))
57 reurmo 3377 . . . . . . . . . . . . . . . . 17 (βˆƒ!𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ) β†’ βˆƒ*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ))
5856, 57syl 17 . . . . . . . . . . . . . . . 16 (𝐼 β‰ˆ 1o β†’ βˆƒ*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ))
5958adantr 479 . . . . . . . . . . . . . . 15 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ βˆƒ*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ))
6021adantr 479 . . . . . . . . . . . . . . . 16 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ 𝐺 ∈ Grp)
6116idghm 19145 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp β†’ ( I β†Ύ (Baseβ€˜πΊ)) ∈ (𝐺 GrpHom 𝐺))
6260, 61syl 17 . . . . . . . . . . . . . . 15 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ ( I β†Ύ (Baseβ€˜πΊ)) ∈ (𝐺 GrpHom 𝐺))
6325adantr 479 . . . . . . . . . . . . . . . 16 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (varFGrpβ€˜πΌ):𝐼⟢(Baseβ€˜πΊ))
64 fcoi2 6765 . . . . . . . . . . . . . . . 16 ((varFGrpβ€˜πΌ):𝐼⟢(Baseβ€˜πΊ) β†’ (( I β†Ύ (Baseβ€˜πΊ)) ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ))
6563, 64syl 17 . . . . . . . . . . . . . . 15 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (( I β†Ύ (Baseβ€˜πΊ)) ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ))
6651feqmptd 6959 . . . . . . . . . . . . . . . . 17 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ 𝑓 = (π‘₯ ∈ (Baseβ€˜πΊ) ↦ (π‘“β€˜π‘₯)))
67 eqidd 2731 . . . . . . . . . . . . . . . . 17 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (𝑛 ∈ β„€ ↦ (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) = (𝑛 ∈ β„€ ↦ (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))))
68 oveq1 7418 . . . . . . . . . . . . . . . . 17 (𝑛 = (π‘“β€˜π‘₯) β†’ (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
6952, 66, 67, 68fmptco 7128 . . . . . . . . . . . . . . . 16 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ ((𝑛 ∈ β„€ ↦ (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ∘ 𝑓) = (π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))))
7027adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ ((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼) ∈ (Baseβ€˜πΊ))
71 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ β„€ ↦ (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) = (𝑛 ∈ β„€ ↦ (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
7217, 71, 16mulgghm2 21247 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ ((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼) ∈ (Baseβ€˜πΊ)) β†’ (𝑛 ∈ β„€ ↦ (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ∈ (β„€ring GrpHom 𝐺))
7360, 70, 72syl2anc 582 . . . . . . . . . . . . . . . . 17 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (𝑛 ∈ β„€ ↦ (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ∈ (β„€ring GrpHom 𝐺))
74 simprl 767 . . . . . . . . . . . . . . . . 17 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ 𝑓 ∈ (𝐺 GrpHom β„€ring))
75 ghmco 19150 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ β„€ ↦ (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ∈ (β„€ring GrpHom 𝐺) ∧ 𝑓 ∈ (𝐺 GrpHom β„€ring)) β†’ ((𝑛 ∈ β„€ ↦ (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ∘ 𝑓) ∈ (𝐺 GrpHom 𝐺))
7673, 74, 75syl2anc 582 . . . . . . . . . . . . . . . 16 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ ((𝑛 ∈ β„€ ↦ (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ∘ 𝑓) ∈ (𝐺 GrpHom 𝐺))
7769, 76eqeltrrd 2832 . . . . . . . . . . . . . . 15 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ∈ (𝐺 GrpHom 𝐺))
7833adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ 𝐼 = {βˆͺ 𝐼})
7978eleq2d 2817 . . . . . . . . . . . . . . . . . . 19 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (𝑦 ∈ 𝐼 ↔ 𝑦 ∈ {βˆͺ 𝐼}))
80 simprr 769 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)
8180oveq1d 7426 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ ((π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = (1(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
8216, 17mulg1 18997 . . . . . . . . . . . . . . . . . . . . . 22 (((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼) ∈ (Baseβ€˜πΊ) β†’ (1(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = ((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))
8370, 82syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (1(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = ((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))
8481, 83eqtrd 2770 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ ((π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = ((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))
85 elsni 4644 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ {βˆͺ 𝐼} β†’ 𝑦 = βˆͺ 𝐼)
8685fveq2d 6894 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ {βˆͺ 𝐼} β†’ ((varFGrpβ€˜πΌ)β€˜π‘¦) = ((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))
8786fveq2d 6894 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ {βˆͺ 𝐼} β†’ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜π‘¦)) = (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
8887oveq1d 7426 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ {βˆͺ 𝐼} β†’ ((π‘“β€˜((varFGrpβ€˜πΌ)β€˜π‘¦))(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = ((π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
8988, 86eqeq12d 2746 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ {βˆͺ 𝐼} β†’ (((π‘“β€˜((varFGrpβ€˜πΌ)β€˜π‘¦))(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = ((varFGrpβ€˜πΌ)β€˜π‘¦) ↔ ((π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = ((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
9084, 89syl5ibrcom 246 . . . . . . . . . . . . . . . . . . 19 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (𝑦 ∈ {βˆͺ 𝐼} β†’ ((π‘“β€˜((varFGrpβ€˜πΌ)β€˜π‘¦))(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = ((varFGrpβ€˜πΌ)β€˜π‘¦)))
9179, 90sylbid 239 . . . . . . . . . . . . . . . . . 18 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (𝑦 ∈ 𝐼 β†’ ((π‘“β€˜((varFGrpβ€˜πΌ)β€˜π‘¦))(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = ((varFGrpβ€˜πΌ)β€˜π‘¦)))
9291imp 405 . . . . . . . . . . . . . . . . 17 (((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) ∧ 𝑦 ∈ 𝐼) β†’ ((π‘“β€˜((varFGrpβ€˜πΌ)β€˜π‘¦))(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = ((varFGrpβ€˜πΌ)β€˜π‘¦))
9392mpteq2dva 5247 . . . . . . . . . . . . . . . 16 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (𝑦 ∈ 𝐼 ↦ ((π‘“β€˜((varFGrpβ€˜πΌ)β€˜π‘¦))(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) = (𝑦 ∈ 𝐼 ↦ ((varFGrpβ€˜πΌ)β€˜π‘¦)))
9463ffvelcdmda 7085 . . . . . . . . . . . . . . . . 17 (((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) ∧ 𝑦 ∈ 𝐼) β†’ ((varFGrpβ€˜πΌ)β€˜π‘¦) ∈ (Baseβ€˜πΊ))
9563feqmptd 6959 . . . . . . . . . . . . . . . . 17 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (varFGrpβ€˜πΌ) = (𝑦 ∈ 𝐼 ↦ ((varFGrpβ€˜πΌ)β€˜π‘¦)))
96 eqidd 2731 . . . . . . . . . . . . . . . . 17 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) = (π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))))
97 fveq2 6890 . . . . . . . . . . . . . . . . . 18 (π‘₯ = ((varFGrpβ€˜πΌ)β€˜π‘¦) β†’ (π‘“β€˜π‘₯) = (π‘“β€˜((varFGrpβ€˜πΌ)β€˜π‘¦)))
9897oveq1d 7426 . . . . . . . . . . . . . . . . 17 (π‘₯ = ((varFGrpβ€˜πΌ)β€˜π‘¦) β†’ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = ((π‘“β€˜((varFGrpβ€˜πΌ)β€˜π‘¦))(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
9994, 95, 96, 98fmptco 7128 . . . . . . . . . . . . . . . 16 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ ((π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ∘ (varFGrpβ€˜πΌ)) = (𝑦 ∈ 𝐼 ↦ ((π‘“β€˜((varFGrpβ€˜πΌ)β€˜π‘¦))(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))))
10093, 99, 953eqtr4d 2780 . . . . . . . . . . . . . . 15 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ ((π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ))
101 coeq1 5856 . . . . . . . . . . . . . . . . 17 (𝑔 = ( I β†Ύ (Baseβ€˜πΊ)) β†’ (𝑔 ∘ (varFGrpβ€˜πΌ)) = (( I β†Ύ (Baseβ€˜πΊ)) ∘ (varFGrpβ€˜πΌ)))
102101eqeq1d 2732 . . . . . . . . . . . . . . . 16 (𝑔 = ( I β†Ύ (Baseβ€˜πΊ)) β†’ ((𝑔 ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ) ↔ (( I β†Ύ (Baseβ€˜πΊ)) ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ)))
103 coeq1 5856 . . . . . . . . . . . . . . . . 17 (𝑔 = (π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) β†’ (𝑔 ∘ (varFGrpβ€˜πΌ)) = ((π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ∘ (varFGrpβ€˜πΌ)))
104103eqeq1d 2732 . . . . . . . . . . . . . . . 16 (𝑔 = (π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) β†’ ((𝑔 ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ) ↔ ((π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ)))
105102, 104rmoi 3884 . . . . . . . . . . . . . . 15 ((βˆƒ*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ) ∧ (( I β†Ύ (Baseβ€˜πΊ)) ∈ (𝐺 GrpHom 𝐺) ∧ (( I β†Ύ (Baseβ€˜πΊ)) ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ)) ∧ ((π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ∈ (𝐺 GrpHom 𝐺) ∧ ((π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ∘ (varFGrpβ€˜πΌ)) = (varFGrpβ€˜πΌ))) β†’ ( I β†Ύ (Baseβ€˜πΊ)) = (π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))))
10659, 62, 65, 77, 100, 105syl122anc 1377 . . . . . . . . . . . . . 14 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ ( I β†Ύ (Baseβ€˜πΊ)) = (π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))))
10754, 106eqtr3id 2784 . . . . . . . . . . . . 13 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ (π‘₯ ∈ (Baseβ€˜πΊ) ↦ π‘₯) = (π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))))
108 mpteqb 7016 . . . . . . . . . . . . . 14 (βˆ€π‘₯ ∈ (Baseβ€˜πΊ)π‘₯ ∈ (Baseβ€˜πΊ) β†’ ((π‘₯ ∈ (Baseβ€˜πΊ) ↦ π‘₯) = (π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ↔ βˆ€π‘₯ ∈ (Baseβ€˜πΊ)π‘₯ = ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))))
109 id 22 . . . . . . . . . . . . . 14 (π‘₯ ∈ (Baseβ€˜πΊ) β†’ π‘₯ ∈ (Baseβ€˜πΊ))
110108, 109mprg 3065 . . . . . . . . . . . . 13 ((π‘₯ ∈ (Baseβ€˜πΊ) ↦ π‘₯) = (π‘₯ ∈ (Baseβ€˜πΊ) ↦ ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) ↔ βˆ€π‘₯ ∈ (Baseβ€˜πΊ)π‘₯ = ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
111107, 110sylib 217 . . . . . . . . . . . 12 ((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ βˆ€π‘₯ ∈ (Baseβ€˜πΊ)π‘₯ = ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
112111r19.21bi 3246 . . . . . . . . . . 11 (((𝐼 β‰ˆ 1o ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) ∧ π‘₯ ∈ (Baseβ€˜πΊ)) β†’ π‘₯ = ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
113112an32s 648 . . . . . . . . . 10 (((𝐼 β‰ˆ 1o ∧ π‘₯ ∈ (Baseβ€˜πΊ)) ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ π‘₯ = ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
11468rspceeqv 3632 . . . . . . . . . 10 (((π‘“β€˜π‘₯) ∈ β„€ ∧ π‘₯ = ((π‘“β€˜π‘₯)(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))) β†’ βˆƒπ‘› ∈ β„€ π‘₯ = (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
11553, 113, 114syl2anc 582 . . . . . . . . 9 (((𝐼 β‰ˆ 1o ∧ π‘₯ ∈ (Baseβ€˜πΊ)) ∧ (𝑓 ∈ (𝐺 GrpHom β„€ring) ∧ (π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1)) β†’ βˆƒπ‘› ∈ β„€ π‘₯ = (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
116115expr 455 . . . . . . . 8 (((𝐼 β‰ˆ 1o ∧ π‘₯ ∈ (Baseβ€˜πΊ)) ∧ 𝑓 ∈ (𝐺 GrpHom β„€ring)) β†’ ((π‘“β€˜((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)) = 1 β†’ βˆƒπ‘› ∈ β„€ π‘₯ = (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))))
11749, 116syld 47 . . . . . . 7 (((𝐼 β‰ˆ 1o ∧ π‘₯ ∈ (Baseβ€˜πΊ)) ∧ 𝑓 ∈ (𝐺 GrpHom β„€ring)) β†’ ((𝑓 ∘ (varFGrpβ€˜πΌ)) = {⟨βˆͺ 𝐼, 1⟩} β†’ βˆƒπ‘› ∈ β„€ π‘₯ = (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))))
118117rexlimdva 3153 . . . . . 6 ((𝐼 β‰ˆ 1o ∧ π‘₯ ∈ (Baseβ€˜πΊ)) β†’ (βˆƒπ‘“ ∈ (𝐺 GrpHom β„€ring)(𝑓 ∘ (varFGrpβ€˜πΌ)) = {⟨βˆͺ 𝐼, 1⟩} β†’ βˆƒπ‘› ∈ β„€ π‘₯ = (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼))))
11941, 118mpd 15 . . . . 5 ((𝐼 β‰ˆ 1o ∧ π‘₯ ∈ (Baseβ€˜πΊ)) β†’ βˆƒπ‘› ∈ β„€ π‘₯ = (𝑛(.gβ€˜πΊ)((varFGrpβ€˜πΌ)β€˜βˆͺ 𝐼)))
12016, 17, 21, 27, 119iscygd 19796 . . . 4 (𝐼 β‰ˆ 1o β†’ 𝐺 ∈ CycGrp)
12115, 120jaoi 853 . . 3 ((𝐼 β‰Ί 1o ∨ 𝐼 β‰ˆ 1o) β†’ 𝐺 ∈ CycGrp)
1221, 121sylbi 216 . 2 (𝐼 β‰Ό 1o β†’ 𝐺 ∈ CycGrp)
123 cygabl 19800 . . 3 (𝐺 ∈ CycGrp β†’ 𝐺 ∈ Abel)
1243frgpnabl 19784 . . . . 5 (1o β‰Ί 𝐼 β†’ Β¬ 𝐺 ∈ Abel)
125124con2i 139 . . . 4 (𝐺 ∈ Abel β†’ Β¬ 1o β‰Ί 𝐼)
126 ablgrp 19694 . . . . . 6 (𝐺 ∈ Abel β†’ 𝐺 ∈ Grp)
127 eqid 2730 . . . . . . 7 (0gβ€˜πΊ) = (0gβ€˜πΊ)
12816, 127grpidcl 18886 . . . . . 6 (𝐺 ∈ Grp β†’ (0gβ€˜πΊ) ∈ (Baseβ€˜πΊ))
1293, 16elbasfv 17154 . . . . . 6 ((0gβ€˜πΊ) ∈ (Baseβ€˜πΊ) β†’ 𝐼 ∈ V)
130126, 128, 1293syl 18 . . . . 5 (𝐺 ∈ Abel β†’ 𝐼 ∈ V)
131 1onn 8641 . . . . . 6 1o ∈ Ο‰
132 nnfi 9169 . . . . . 6 (1o ∈ Ο‰ β†’ 1o ∈ Fin)
133131, 132ax-mp 5 . . . . 5 1o ∈ Fin
134 fidomtri2 9991 . . . . 5 ((𝐼 ∈ V ∧ 1o ∈ Fin) β†’ (𝐼 β‰Ό 1o ↔ Β¬ 1o β‰Ί 𝐼))
135130, 133, 134sylancl 584 . . . 4 (𝐺 ∈ Abel β†’ (𝐼 β‰Ό 1o ↔ Β¬ 1o β‰Ί 𝐼))
136125, 135mpbird 256 . . 3 (𝐺 ∈ Abel β†’ 𝐼 β‰Ό 1o)
137123, 136syl 17 . 2 (𝐺 ∈ CycGrp β†’ 𝐼 β‰Ό 1o)
138122, 137impbii 208 1 (𝐼 β‰Ό 1o ↔ 𝐺 ∈ CycGrp)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 843   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  βˆƒwrex 3068  βˆƒ!wreu 3372  βˆƒ*wrmo 3373  Vcvv 3472  βˆ…c0 4321  {csn 4627  βŸ¨cop 4633  βˆͺ cuni 4907   class class class wbr 5147   ↦ cmpt 5230   I cid 5572   β†Ύ cres 5677   ∘ ccom 5679  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  Ο‰com 7857  1oc1o 8461   β‰ˆ cen 8938   β‰Ό cdom 8939   β‰Ί csdm 8940  Fincfn 8941  1c1 11113  β„€cz 12562  Basecbs 17148  0gc0g 17389  Grpcgrp 18855  .gcmg 18986   GrpHom cghm 19127   ~FG cefg 19615  freeGrpcfrgp 19616  varFGrpcvrgp 19617  Abelcabl 19690  CycGrpccyg 19786  β„€ringczring 21217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-ec 8707  df-qs 8711  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-xnn0 12549  df-z 12563  df-dec 12682  df-uz 12827  df-rp 12979  df-fz 13489  df-fzo 13632  df-seq 13971  df-hash 14295  df-word 14469  df-lsw 14517  df-concat 14525  df-s1 14550  df-substr 14595  df-pfx 14625  df-splice 14704  df-reverse 14713  df-s2 14803  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-0g 17391  df-gsum 17392  df-imas 17458  df-qus 17459  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-frmd 18766  df-vrmd 18767  df-grp 18858  df-minusg 18859  df-mulg 18987  df-subg 19039  df-ghm 19128  df-efg 19618  df-frgp 19619  df-vrgp 19620  df-cmn 19691  df-abl 19692  df-cyg 19787  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-cring 20130  df-subrng 20434  df-subrg 20459  df-cnfld 21145  df-zring 21218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator