MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpcyg Structured version   Visualization version   GIF version

Theorem frgpcyg 21534
Description: A free group is cyclic iff it has zero or one generator. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 18-Apr-2021.)
Hypothesis
Ref Expression
frgpcyg.g 𝐺 = (freeGrp‘𝐼)
Assertion
Ref Expression
frgpcyg (𝐼 ≼ 1o𝐺 ∈ CycGrp)

Proof of Theorem frgpcyg
Dummy variables 𝑓 𝑔 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 8996 . . 3 (𝐼 ≼ 1o ↔ (𝐼 ≺ 1o𝐼 ≈ 1o))
2 sdom1 9250 . . . . 5 (𝐼 ≺ 1o𝐼 = ∅)
3 frgpcyg.g . . . . . . 7 𝐺 = (freeGrp‘𝐼)
4 fveq2 6876 . . . . . . 7 (𝐼 = ∅ → (freeGrp‘𝐼) = (freeGrp‘∅))
53, 4eqtrid 2782 . . . . . 6 (𝐼 = ∅ → 𝐺 = (freeGrp‘∅))
6 0ex 5277 . . . . . . . 8 ∅ ∈ V
7 eqid 2735 . . . . . . . . 9 (freeGrp‘∅) = (freeGrp‘∅)
87frgpgrp 19743 . . . . . . . 8 (∅ ∈ V → (freeGrp‘∅) ∈ Grp)
96, 8ax-mp 5 . . . . . . 7 (freeGrp‘∅) ∈ Grp
10 eqid 2735 . . . . . . . 8 (Base‘(freeGrp‘∅)) = (Base‘(freeGrp‘∅))
117, 100frgp 19760 . . . . . . 7 (Base‘(freeGrp‘∅)) ≈ 1o
12100cyg 19874 . . . . . . 7 (((freeGrp‘∅) ∈ Grp ∧ (Base‘(freeGrp‘∅)) ≈ 1o) → (freeGrp‘∅) ∈ CycGrp)
139, 11, 12mp2an 692 . . . . . 6 (freeGrp‘∅) ∈ CycGrp
145, 13eqeltrdi 2842 . . . . 5 (𝐼 = ∅ → 𝐺 ∈ CycGrp)
152, 14sylbi 217 . . . 4 (𝐼 ≺ 1o𝐺 ∈ CycGrp)
16 eqid 2735 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
17 eqid 2735 . . . . 5 (.g𝐺) = (.g𝐺)
18 relen 8964 . . . . . . 7 Rel ≈
1918brrelex1i 5710 . . . . . 6 (𝐼 ≈ 1o𝐼 ∈ V)
203frgpgrp 19743 . . . . . 6 (𝐼 ∈ V → 𝐺 ∈ Grp)
2119, 20syl 17 . . . . 5 (𝐼 ≈ 1o𝐺 ∈ Grp)
22 eqid 2735 . . . . . . . 8 ( ~FG𝐼) = ( ~FG𝐼)
23 eqid 2735 . . . . . . . 8 (varFGrp𝐼) = (varFGrp𝐼)
2422, 23, 3, 16vrgpf 19749 . . . . . . 7 (𝐼 ∈ V → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
2519, 24syl 17 . . . . . 6 (𝐼 ≈ 1o → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
26 en1uniel 9043 . . . . . 6 (𝐼 ≈ 1o 𝐼𝐼)
2725, 26ffvelcdmd 7075 . . . . 5 (𝐼 ≈ 1o → ((varFGrp𝐼)‘ 𝐼) ∈ (Base‘𝐺))
28 zringgrp 21413 . . . . . . . . 9 ring ∈ Grp
2919uniexd 7736 . . . . . . . . . . 11 (𝐼 ≈ 1o 𝐼 ∈ V)
30 1zzd 12623 . . . . . . . . . . 11 (𝐼 ≈ 1o → 1 ∈ ℤ)
3129, 30fsnd 6861 . . . . . . . . . 10 (𝐼 ≈ 1o → {⟨ 𝐼, 1⟩}:{ 𝐼}⟶ℤ)
32 en1b 9039 . . . . . . . . . . . 12 (𝐼 ≈ 1o𝐼 = { 𝐼})
3332biimpi 216 . . . . . . . . . . 11 (𝐼 ≈ 1o𝐼 = { 𝐼})
3433feq2d 6692 . . . . . . . . . 10 (𝐼 ≈ 1o → ({⟨ 𝐼, 1⟩}:𝐼⟶ℤ ↔ {⟨ 𝐼, 1⟩}:{ 𝐼}⟶ℤ))
3531, 34mpbird 257 . . . . . . . . 9 (𝐼 ≈ 1o → {⟨ 𝐼, 1⟩}:𝐼⟶ℤ)
36 zringbas 21414 . . . . . . . . . 10 ℤ = (Base‘ℤring)
373, 36, 23frgpup3 19759 . . . . . . . . 9 ((ℤring ∈ Grp ∧ 𝐼 ∈ V ∧ {⟨ 𝐼, 1⟩}:𝐼⟶ℤ) → ∃!𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
3828, 19, 35, 37mp3an2i 1468 . . . . . . . 8 (𝐼 ≈ 1o → ∃!𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
3938adantr 480 . . . . . . 7 ((𝐼 ≈ 1o𝑥 ∈ (Base‘𝐺)) → ∃!𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
40 reurex 3363 . . . . . . 7 (∃!𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → ∃𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
4139, 40syl 17 . . . . . 6 ((𝐼 ≈ 1o𝑥 ∈ (Base‘𝐺)) → ∃𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
42 fveq1 6875 . . . . . . . . . 10 ((𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → ((𝑓 ∘ (varFGrp𝐼))‘ 𝐼) = ({⟨ 𝐼, 1⟩}‘ 𝐼))
4325, 26fvco3d 6979 . . . . . . . . . . 11 (𝐼 ≈ 1o → ((𝑓 ∘ (varFGrp𝐼))‘ 𝐼) = (𝑓‘((varFGrp𝐼)‘ 𝐼)))
44 1z 12622 . . . . . . . . . . . 12 1 ∈ ℤ
45 fvsng 7172 . . . . . . . . . . . 12 (( 𝐼 ∈ V ∧ 1 ∈ ℤ) → ({⟨ 𝐼, 1⟩}‘ 𝐼) = 1)
4629, 44, 45sylancl 586 . . . . . . . . . . 11 (𝐼 ≈ 1o → ({⟨ 𝐼, 1⟩}‘ 𝐼) = 1)
4743, 46eqeq12d 2751 . . . . . . . . . 10 (𝐼 ≈ 1o → (((𝑓 ∘ (varFGrp𝐼))‘ 𝐼) = ({⟨ 𝐼, 1⟩}‘ 𝐼) ↔ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1))
4842, 47imbitrid 244 . . . . . . . . 9 (𝐼 ≈ 1o → ((𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1))
4948ad2antrr 726 . . . . . . . 8 (((𝐼 ≈ 1o𝑥 ∈ (Base‘𝐺)) ∧ 𝑓 ∈ (𝐺 GrpHom ℤring)) → ((𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1))
5016, 36ghmf 19203 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐺 GrpHom ℤring) → 𝑓:(Base‘𝐺)⟶ℤ)
5150ad2antrl 728 . . . . . . . . . . . 12 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝑓:(Base‘𝐺)⟶ℤ)
5251ffvelcdmda 7074 . . . . . . . . . . 11 (((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑓𝑥) ∈ ℤ)
5352an32s 652 . . . . . . . . . 10 (((𝐼 ≈ 1o𝑥 ∈ (Base‘𝐺)) ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑓𝑥) ∈ ℤ)
54 mptresid 6038 . . . . . . . . . . . . . 14 ( I ↾ (Base‘𝐺)) = (𝑥 ∈ (Base‘𝐺) ↦ 𝑥)
553, 16, 23frgpup3 19759 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝐼 ∈ V ∧ (varFGrp𝐼):𝐼⟶(Base‘𝐺)) → ∃!𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
5621, 19, 25, 55syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝐼 ≈ 1o → ∃!𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
57 reurmo 3362 . . . . . . . . . . . . . . . . 17 (∃!𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼) → ∃*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
5856, 57syl 17 . . . . . . . . . . . . . . . 16 (𝐼 ≈ 1o → ∃*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
5958adantr 480 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ∃*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
6021adantr 480 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝐺 ∈ Grp)
6116idghm 19214 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → ( I ↾ (Base‘𝐺)) ∈ (𝐺 GrpHom 𝐺))
6260, 61syl 17 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ( I ↾ (Base‘𝐺)) ∈ (𝐺 GrpHom 𝐺))
6325adantr 480 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
64 fcoi2 6753 . . . . . . . . . . . . . . . 16 ((varFGrp𝐼):𝐼⟶(Base‘𝐺) → (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)) = (varFGrp𝐼))
6563, 64syl 17 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)) = (varFGrp𝐼))
6651feqmptd 6947 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝑓 = (𝑥 ∈ (Base‘𝐺) ↦ (𝑓𝑥)))
67 eqidd 2736 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
68 oveq1 7412 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑓𝑥) → (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
6952, 66, 67, 68fmptco 7119 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ 𝑓) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
7027adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((varFGrp𝐼)‘ 𝐼) ∈ (Base‘𝐺))
71 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
7217, 71, 16mulgghm2 21437 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ ((varFGrp𝐼)‘ 𝐼) ∈ (Base‘𝐺)) → (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (ℤring GrpHom 𝐺))
7360, 70, 72syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (ℤring GrpHom 𝐺))
74 simprl 770 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝑓 ∈ (𝐺 GrpHom ℤring))
75 ghmco 19219 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (ℤring GrpHom 𝐺) ∧ 𝑓 ∈ (𝐺 GrpHom ℤring)) → ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ 𝑓) ∈ (𝐺 GrpHom 𝐺))
7673, 74, 75syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ 𝑓) ∈ (𝐺 GrpHom 𝐺))
7769, 76eqeltrrd 2835 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (𝐺 GrpHom 𝐺))
7833adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝐼 = { 𝐼})
7978eleq2d 2820 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑦𝐼𝑦 ∈ { 𝐼}))
80 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)
8180oveq1d 7420 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑓‘((varFGrp𝐼)‘ 𝐼))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = (1(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
8216, 17mulg1 19064 . . . . . . . . . . . . . . . . . . . . . 22 (((varFGrp𝐼)‘ 𝐼) ∈ (Base‘𝐺) → (1(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘ 𝐼))
8370, 82syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (1(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘ 𝐼))
8481, 83eqtrd 2770 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑓‘((varFGrp𝐼)‘ 𝐼))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘ 𝐼))
85 elsni 4618 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ { 𝐼} → 𝑦 = 𝐼)
8685fveq2d 6880 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ { 𝐼} → ((varFGrp𝐼)‘𝑦) = ((varFGrp𝐼)‘ 𝐼))
8786fveq2d 6880 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ { 𝐼} → (𝑓‘((varFGrp𝐼)‘𝑦)) = (𝑓‘((varFGrp𝐼)‘ 𝐼)))
8887oveq1d 7420 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ { 𝐼} → ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((𝑓‘((varFGrp𝐼)‘ 𝐼))(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
8988, 86eqeq12d 2751 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ { 𝐼} → (((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘𝑦) ↔ ((𝑓‘((varFGrp𝐼)‘ 𝐼))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘ 𝐼)))
9084, 89syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑦 ∈ { 𝐼} → ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘𝑦)))
9179, 90sylbid 240 . . . . . . . . . . . . . . . . . 18 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑦𝐼 → ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘𝑦)))
9291imp 406 . . . . . . . . . . . . . . . . 17 (((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) ∧ 𝑦𝐼) → ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘𝑦))
9392mpteq2dva 5214 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑦𝐼 ↦ ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼))) = (𝑦𝐼 ↦ ((varFGrp𝐼)‘𝑦)))
9463ffvelcdmda 7074 . . . . . . . . . . . . . . . . 17 (((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) ∧ 𝑦𝐼) → ((varFGrp𝐼)‘𝑦) ∈ (Base‘𝐺))
9563feqmptd 6947 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (varFGrp𝐼) = (𝑦𝐼 ↦ ((varFGrp𝐼)‘𝑦)))
96 eqidd 2736 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
97 fveq2 6876 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((varFGrp𝐼)‘𝑦) → (𝑓𝑥) = (𝑓‘((varFGrp𝐼)‘𝑦)))
9897oveq1d 7420 . . . . . . . . . . . . . . . . 17 (𝑥 = ((varFGrp𝐼)‘𝑦) → ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
9994, 95, 96, 98fmptco 7119 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)) = (𝑦𝐼 ↦ ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
10093, 99, 953eqtr4d 2780 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)) = (varFGrp𝐼))
101 coeq1 5837 . . . . . . . . . . . . . . . . 17 (𝑔 = ( I ↾ (Base‘𝐺)) → (𝑔 ∘ (varFGrp𝐼)) = (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)))
102101eqeq1d 2737 . . . . . . . . . . . . . . . 16 (𝑔 = ( I ↾ (Base‘𝐺)) → ((𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼) ↔ (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)) = (varFGrp𝐼)))
103 coeq1 5837 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) → (𝑔 ∘ (varFGrp𝐼)) = ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)))
104103eqeq1d 2737 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) → ((𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)) = (varFGrp𝐼)))
105102, 104rmoi 3866 . . . . . . . . . . . . . . 15 ((∃*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼) ∧ (( I ↾ (Base‘𝐺)) ∈ (𝐺 GrpHom 𝐺) ∧ (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)) = (varFGrp𝐼)) ∧ ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (𝐺 GrpHom 𝐺) ∧ ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)) = (varFGrp𝐼))) → ( I ↾ (Base‘𝐺)) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
10659, 62, 65, 77, 100, 105syl122anc 1381 . . . . . . . . . . . . . 14 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ( I ↾ (Base‘𝐺)) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
10754, 106eqtr3id 2784 . . . . . . . . . . . . 13 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑥 ∈ (Base‘𝐺) ↦ 𝑥) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
108 mpteqb 7005 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (Base‘𝐺)𝑥 ∈ (Base‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ 𝑥) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ↔ ∀𝑥 ∈ (Base‘𝐺)𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
109 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝐺))
110108, 109mprg 3057 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘𝐺) ↦ 𝑥) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ↔ ∀𝑥 ∈ (Base‘𝐺)𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
111107, 110sylib 218 . . . . . . . . . . . 12 ((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ∀𝑥 ∈ (Base‘𝐺)𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
112111r19.21bi 3234 . . . . . . . . . . 11 (((𝐼 ≈ 1o ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
113112an32s 652 . . . . . . . . . 10 (((𝐼 ≈ 1o𝑥 ∈ (Base‘𝐺)) ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
11468rspceeqv 3624 . . . . . . . . . 10 (((𝑓𝑥) ∈ ℤ ∧ 𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
11553, 113, 114syl2anc 584 . . . . . . . . 9 (((𝐼 ≈ 1o𝑥 ∈ (Base‘𝐺)) ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
116115expr 456 . . . . . . . 8 (((𝐼 ≈ 1o𝑥 ∈ (Base‘𝐺)) ∧ 𝑓 ∈ (𝐺 GrpHom ℤring)) → ((𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1 → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
11749, 116syld 47 . . . . . . 7 (((𝐼 ≈ 1o𝑥 ∈ (Base‘𝐺)) ∧ 𝑓 ∈ (𝐺 GrpHom ℤring)) → ((𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
118117rexlimdva 3141 . . . . . 6 ((𝐼 ≈ 1o𝑥 ∈ (Base‘𝐺)) → (∃𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
11941, 118mpd 15 . . . . 5 ((𝐼 ≈ 1o𝑥 ∈ (Base‘𝐺)) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
12016, 17, 21, 27, 119iscygd 19868 . . . 4 (𝐼 ≈ 1o𝐺 ∈ CycGrp)
12115, 120jaoi 857 . . 3 ((𝐼 ≺ 1o𝐼 ≈ 1o) → 𝐺 ∈ CycGrp)
1221, 121sylbi 217 . 2 (𝐼 ≼ 1o𝐺 ∈ CycGrp)
123 cygabl 19872 . . 3 (𝐺 ∈ CycGrp → 𝐺 ∈ Abel)
1243frgpnabl 19856 . . . . 5 (1o𝐼 → ¬ 𝐺 ∈ Abel)
125124con2i 139 . . . 4 (𝐺 ∈ Abel → ¬ 1o𝐼)
126 ablgrp 19766 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
127 eqid 2735 . . . . . . 7 (0g𝐺) = (0g𝐺)
12816, 127grpidcl 18948 . . . . . 6 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
1293, 16elbasfv 17234 . . . . . 6 ((0g𝐺) ∈ (Base‘𝐺) → 𝐼 ∈ V)
130126, 128, 1293syl 18 . . . . 5 (𝐺 ∈ Abel → 𝐼 ∈ V)
131 1onn 8652 . . . . . 6 1o ∈ ω
132 nnfi 9181 . . . . . 6 (1o ∈ ω → 1o ∈ Fin)
133131, 132ax-mp 5 . . . . 5 1o ∈ Fin
134 fidomtri2 10008 . . . . 5 ((𝐼 ∈ V ∧ 1o ∈ Fin) → (𝐼 ≼ 1o ↔ ¬ 1o𝐼))
135130, 133, 134sylancl 586 . . . 4 (𝐺 ∈ Abel → (𝐼 ≼ 1o ↔ ¬ 1o𝐼))
136125, 135mpbird 257 . . 3 (𝐺 ∈ Abel → 𝐼 ≼ 1o)
137123, 136syl 17 . 2 (𝐺 ∈ CycGrp → 𝐼 ≼ 1o)
138122, 137impbii 209 1 (𝐼 ≼ 1o𝐺 ∈ CycGrp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wral 3051  wrex 3060  ∃!wreu 3357  ∃*wrmo 3358  Vcvv 3459  c0 4308  {csn 4601  cop 4607   cuni 4883   class class class wbr 5119  cmpt 5201   I cid 5547  cres 5656  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  ωcom 7861  1oc1o 8473  cen 8956  cdom 8957  csdm 8958  Fincfn 8959  1c1 11130  cz 12588  Basecbs 17228  0gc0g 17453  Grpcgrp 18916  .gcmg 19050   GrpHom cghm 19195   ~FG cefg 19687  freeGrpcfrgp 19688  varFGrpcvrgp 19689  Abelcabl 19762  CycGrpccyg 19858  ringczring 21407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-splice 14768  df-reverse 14777  df-s2 14867  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-gsum 17456  df-imas 17522  df-qus 17523  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-frmd 18827  df-vrmd 18828  df-grp 18919  df-minusg 18920  df-mulg 19051  df-subg 19106  df-ghm 19196  df-efg 19690  df-frgp 19691  df-vrgp 19692  df-cmn 19763  df-abl 19764  df-cyg 19859  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-subrng 20506  df-subrg 20530  df-cnfld 21316  df-zring 21408
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator