Proof of Theorem cdleme0moN
| Step | Hyp | Ref
| Expression |
| 1 | | simp23r 1296 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ¬ 𝑅 ≤ 𝑊) |
| 2 | | neanior 3035 |
. . 3
⊢ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) ↔ ¬ (𝑅 = 𝑃 ∨ 𝑅 = 𝑄)) |
| 3 | | simpl33 1257 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) |
| 4 | | simp23l 1295 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑅 ∈ 𝐴) |
| 5 | 4 | adantr 480 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → 𝑅 ∈ 𝐴) |
| 6 | | simprl 771 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → 𝑅 ≠ 𝑃) |
| 7 | | simprr 773 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → 𝑅 ≠ 𝑄) |
| 8 | | simpl32 1256 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
| 9 | | simpl1l 1225 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → 𝐾 ∈ HL) |
| 10 | | hlcvl 39360 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| 11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → 𝐾 ∈ CvLat) |
| 12 | | simp21l 1291 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑃 ∈ 𝐴) |
| 13 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → 𝑃 ∈ 𝐴) |
| 14 | | simp22l 1293 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑄 ∈ 𝐴) |
| 15 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → 𝑄 ∈ 𝐴) |
| 16 | | simpl31 1255 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → 𝑃 ≠ 𝑄) |
| 17 | | cdleme0.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
| 18 | | cdleme0.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
| 19 | | cdleme0.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
| 20 | 17, 18, 19 | cvlsupr2 39344 |
. . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
| 21 | 11, 13, 15, 5, 16, 20 | syl131anc 1385 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
| 22 | 6, 7, 8, 21 | mpbir3and 1343 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
| 23 | | simp1l 1198 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝐾 ∈ HL) |
| 24 | | simp1r 1199 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑊 ∈ 𝐻) |
| 25 | | simp21r 1292 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ¬ 𝑃 ≤ 𝑊) |
| 26 | | simp31 1210 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑃 ≠ 𝑄) |
| 27 | | cdleme0.m |
. . . . . . . . 9
⊢ ∧ =
(meet‘𝐾) |
| 28 | | cdleme0.h |
. . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) |
| 29 | | cdleme0.u |
. . . . . . . . 9
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 30 | 18, 19, 27, 17, 28, 29 | lhpat2 40047 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑈 ∈ 𝐴) |
| 31 | 23, 24, 12, 25, 14, 26, 30 | syl222anc 1388 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑈 ∈ 𝐴) |
| 32 | 31 | adantr 480 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → 𝑈 ∈ 𝐴) |
| 33 | | simpl1 1192 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 34 | | simpl21 1252 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 35 | | simpl22 1253 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 36 | 18, 19, 27, 17, 28, 29 | cdleme02N 40224 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑈) = (𝑄 ∨ 𝑈) ∧ 𝑈 ≤ 𝑊)) |
| 37 | 36 | simpld 494 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑈) = (𝑄 ∨ 𝑈)) |
| 38 | 33, 34, 35, 16, 37 | syl121anc 1377 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → (𝑃 ∨ 𝑈) = (𝑄 ∨ 𝑈)) |
| 39 | | df-rmo 3380 |
. . . . . . 7
⊢
(∃*𝑟 ∈
𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) |
| 40 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑃 ∨ 𝑟) = (𝑃 ∨ 𝑅)) |
| 41 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑄 ∨ 𝑟) = (𝑄 ∨ 𝑅)) |
| 42 | 40, 41 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ((𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
| 43 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑟 = 𝑈 → (𝑃 ∨ 𝑟) = (𝑃 ∨ 𝑈)) |
| 44 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑟 = 𝑈 → (𝑄 ∨ 𝑟) = (𝑄 ∨ 𝑈)) |
| 45 | 43, 44 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑟 = 𝑈 → ((𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ (𝑃 ∨ 𝑈) = (𝑄 ∨ 𝑈))) |
| 46 | 42, 45 | rmoi 3891 |
. . . . . . 7
⊢
((∃*𝑟 ∈
𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ∧ (𝑅 ∈ 𝐴 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑈 ∈ 𝐴 ∧ (𝑃 ∨ 𝑈) = (𝑄 ∨ 𝑈))) → 𝑅 = 𝑈) |
| 47 | 39, 46 | syl3an1br 1408 |
. . . . . 6
⊢
((∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) ∧ (𝑅 ∈ 𝐴 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑈 ∈ 𝐴 ∧ (𝑃 ∨ 𝑈) = (𝑄 ∨ 𝑈))) → 𝑅 = 𝑈) |
| 48 | 3, 5, 22, 32, 38, 47 | syl122anc 1381 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → 𝑅 = 𝑈) |
| 49 | 36 | simprd 495 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑈 ≤ 𝑊) |
| 50 | 33, 34, 35, 16, 49 | syl121anc 1377 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → 𝑈 ≤ 𝑊) |
| 51 | 48, 50 | eqbrtrd 5165 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) → 𝑅 ≤ 𝑊) |
| 52 | 51 | ex 412 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) → 𝑅 ≤ 𝑊)) |
| 53 | 2, 52 | biimtrrid 243 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (¬ (𝑅 = 𝑃 ∨ 𝑅 = 𝑄) → 𝑅 ≤ 𝑊)) |
| 54 | 1, 53 | mt3d 148 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝑅 = 𝑃 ∨ 𝑅 = 𝑄)) |