Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0moN Structured version   Visualization version   GIF version

Theorem cdleme0moN 40227
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l = (le‘𝐾)
cdleme0.j = (join‘𝐾)
cdleme0.m = (meet‘𝐾)
cdleme0.a 𝐴 = (Atoms‘𝐾)
cdleme0.h 𝐻 = (LHyp‘𝐾)
cdleme0.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme0moN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅 = 𝑃𝑅 = 𝑄))
Distinct variable groups:   𝐴,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑅,𝑟   𝑈,𝑟
Allowed substitution hints:   𝐻(𝑟)   𝐾(𝑟)   (𝑟)   (𝑟)   𝑊(𝑟)

Proof of Theorem cdleme0moN
StepHypRef Expression
1 simp23r 1296 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑅 𝑊)
2 neanior 3035 . . 3 ((𝑅𝑃𝑅𝑄) ↔ ¬ (𝑅 = 𝑃𝑅 = 𝑄))
3 simpl33 1257 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
4 simp23l 1295 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑅𝐴)
54adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅𝐴)
6 simprl 771 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅𝑃)
7 simprr 773 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅𝑄)
8 simpl32 1256 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅 (𝑃 𝑄))
9 simpl1l 1225 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝐾 ∈ HL)
10 hlcvl 39360 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
119, 10syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝐾 ∈ CvLat)
12 simp21l 1291 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
1312adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑃𝐴)
14 simp22l 1293 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝐴)
1514adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑄𝐴)
16 simpl31 1255 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑃𝑄)
17 cdleme0.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
18 cdleme0.l . . . . . . . . 9 = (le‘𝐾)
19 cdleme0.j . . . . . . . . 9 = (join‘𝐾)
2017, 18, 19cvlsupr2 39344 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
2111, 13, 15, 5, 16, 20syl131anc 1385 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
226, 7, 8, 21mpbir3and 1343 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝑃 𝑅) = (𝑄 𝑅))
23 simp1l 1198 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
24 simp1r 1199 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑊𝐻)
25 simp21r 1292 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑃 𝑊)
26 simp31 1210 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
27 cdleme0.m . . . . . . . . 9 = (meet‘𝐾)
28 cdleme0.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
29 cdleme0.u . . . . . . . . 9 𝑈 = ((𝑃 𝑄) 𝑊)
3018, 19, 27, 17, 28, 29lhpat2 40047 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
3123, 24, 12, 25, 14, 26, 30syl222anc 1388 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑈𝐴)
3231adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑈𝐴)
33 simpl1 1192 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
34 simpl21 1252 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
35 simpl22 1253 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3618, 19, 27, 17, 28, 29cdleme02N 40224 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ((𝑃 𝑈) = (𝑄 𝑈) ∧ 𝑈 𝑊))
3736simpld 494 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (𝑃 𝑈) = (𝑄 𝑈))
3833, 34, 35, 16, 37syl121anc 1377 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝑃 𝑈) = (𝑄 𝑈))
39 df-rmo 3380 . . . . . . 7 (∃*𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟) ↔ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
40 oveq2 7439 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑃 𝑟) = (𝑃 𝑅))
41 oveq2 7439 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
4240, 41eqeq12d 2753 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
43 oveq2 7439 . . . . . . . . 9 (𝑟 = 𝑈 → (𝑃 𝑟) = (𝑃 𝑈))
44 oveq2 7439 . . . . . . . . 9 (𝑟 = 𝑈 → (𝑄 𝑟) = (𝑄 𝑈))
4543, 44eqeq12d 2753 . . . . . . . 8 (𝑟 = 𝑈 → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃 𝑈) = (𝑄 𝑈)))
4642, 45rmoi 3891 . . . . . . 7 ((∃*𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟) ∧ (𝑅𝐴 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑈𝐴 ∧ (𝑃 𝑈) = (𝑄 𝑈))) → 𝑅 = 𝑈)
4739, 46syl3an1br 1408 . . . . . 6 ((∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ∧ (𝑅𝐴 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑈𝐴 ∧ (𝑃 𝑈) = (𝑄 𝑈))) → 𝑅 = 𝑈)
483, 5, 22, 32, 38, 47syl122anc 1381 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅 = 𝑈)
4936simprd 495 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑈 𝑊)
5033, 34, 35, 16, 49syl121anc 1377 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑈 𝑊)
5148, 50eqbrtrd 5165 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅 𝑊)
5251ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑅𝑃𝑅𝑄) → 𝑅 𝑊))
532, 52biimtrrid 243 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (¬ (𝑅 = 𝑃𝑅 = 𝑄) → 𝑅 𝑊))
541, 53mt3d 148 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅 = 𝑃𝑅 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  ∃*wmo 2538  wne 2940  ∃*wrmo 3379   class class class wbr 5143  cfv 6561  (class class class)co 7431  lecple 17304  joincjn 18357  meetcmee 18358  Atomscatm 39264  CvLatclc 39266  HLchlt 39351  LHypclh 39986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-lhyp 39990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator