Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0moN Structured version   Visualization version   GIF version

Theorem cdleme0moN 40244
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l = (le‘𝐾)
cdleme0.j = (join‘𝐾)
cdleme0.m = (meet‘𝐾)
cdleme0.a 𝐴 = (Atoms‘𝐾)
cdleme0.h 𝐻 = (LHyp‘𝐾)
cdleme0.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme0moN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅 = 𝑃𝑅 = 𝑄))
Distinct variable groups:   𝐴,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑅,𝑟   𝑈,𝑟
Allowed substitution hints:   𝐻(𝑟)   𝐾(𝑟)   (𝑟)   (𝑟)   𝑊(𝑟)

Proof of Theorem cdleme0moN
StepHypRef Expression
1 simp23r 1296 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑅 𝑊)
2 neanior 3025 . . 3 ((𝑅𝑃𝑅𝑄) ↔ ¬ (𝑅 = 𝑃𝑅 = 𝑄))
3 simpl33 1257 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
4 simp23l 1295 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑅𝐴)
54adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅𝐴)
6 simprl 770 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅𝑃)
7 simprr 772 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅𝑄)
8 simpl32 1256 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅 (𝑃 𝑄))
9 simpl1l 1225 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝐾 ∈ HL)
10 hlcvl 39377 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
119, 10syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝐾 ∈ CvLat)
12 simp21l 1291 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
1312adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑃𝐴)
14 simp22l 1293 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝐴)
1514adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑄𝐴)
16 simpl31 1255 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑃𝑄)
17 cdleme0.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
18 cdleme0.l . . . . . . . . 9 = (le‘𝐾)
19 cdleme0.j . . . . . . . . 9 = (join‘𝐾)
2017, 18, 19cvlsupr2 39361 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
2111, 13, 15, 5, 16, 20syl131anc 1385 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
226, 7, 8, 21mpbir3and 1343 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝑃 𝑅) = (𝑄 𝑅))
23 simp1l 1198 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
24 simp1r 1199 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑊𝐻)
25 simp21r 1292 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑃 𝑊)
26 simp31 1210 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
27 cdleme0.m . . . . . . . . 9 = (meet‘𝐾)
28 cdleme0.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
29 cdleme0.u . . . . . . . . 9 𝑈 = ((𝑃 𝑄) 𝑊)
3018, 19, 27, 17, 28, 29lhpat2 40064 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
3123, 24, 12, 25, 14, 26, 30syl222anc 1388 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑈𝐴)
3231adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑈𝐴)
33 simpl1 1192 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
34 simpl21 1252 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
35 simpl22 1253 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3618, 19, 27, 17, 28, 29cdleme02N 40241 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ((𝑃 𝑈) = (𝑄 𝑈) ∧ 𝑈 𝑊))
3736simpld 494 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (𝑃 𝑈) = (𝑄 𝑈))
3833, 34, 35, 16, 37syl121anc 1377 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝑃 𝑈) = (𝑄 𝑈))
39 df-rmo 3359 . . . . . . 7 (∃*𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟) ↔ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
40 oveq2 7413 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑃 𝑟) = (𝑃 𝑅))
41 oveq2 7413 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
4240, 41eqeq12d 2751 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
43 oveq2 7413 . . . . . . . . 9 (𝑟 = 𝑈 → (𝑃 𝑟) = (𝑃 𝑈))
44 oveq2 7413 . . . . . . . . 9 (𝑟 = 𝑈 → (𝑄 𝑟) = (𝑄 𝑈))
4543, 44eqeq12d 2751 . . . . . . . 8 (𝑟 = 𝑈 → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃 𝑈) = (𝑄 𝑈)))
4642, 45rmoi 3866 . . . . . . 7 ((∃*𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟) ∧ (𝑅𝐴 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑈𝐴 ∧ (𝑃 𝑈) = (𝑄 𝑈))) → 𝑅 = 𝑈)
4739, 46syl3an1br 1408 . . . . . 6 ((∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ∧ (𝑅𝐴 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑈𝐴 ∧ (𝑃 𝑈) = (𝑄 𝑈))) → 𝑅 = 𝑈)
483, 5, 22, 32, 38, 47syl122anc 1381 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅 = 𝑈)
4936simprd 495 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑈 𝑊)
5033, 34, 35, 16, 49syl121anc 1377 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑈 𝑊)
5148, 50eqbrtrd 5141 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅 𝑊)
5251ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑅𝑃𝑅𝑄) → 𝑅 𝑊))
532, 52biimtrrid 243 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (¬ (𝑅 = 𝑃𝑅 = 𝑄) → 𝑅 𝑊))
541, 53mt3d 148 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅 = 𝑃𝑅 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  ∃*wmo 2537  wne 2932  ∃*wrmo 3358   class class class wbr 5119  cfv 6531  (class class class)co 7405  lecple 17278  joincjn 18323  meetcmee 18324  Atomscatm 39281  CvLatclc 39283  HLchlt 39368  LHypclh 40003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-lhyp 40007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator