Step | Hyp | Ref
| Expression |
1 | | frgpnabl.a |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝐼) |
2 | | 0ex 5226 |
. . 3
⊢ ∅
∈ V |
3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → ∅ ∈
V) |
4 | | frgpnabl.d |
. . . . . . . 8
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
5 | | difss 4062 |
. . . . . . . 8
⊢ (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) ⊆ 𝑊 |
6 | 4, 5 | eqsstri 3951 |
. . . . . . 7
⊢ 𝐷 ⊆ 𝑊 |
7 | | frgpnabl.g |
. . . . . . . . 9
⊢ 𝐺 = (freeGrp‘𝐼) |
8 | | frgpnabl.w |
. . . . . . . . 9
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
9 | | frgpnabl.r |
. . . . . . . . 9
⊢ ∼ = (
~FG ‘𝐼) |
10 | | frgpnabl.p |
. . . . . . . . 9
⊢ + =
(+g‘𝐺) |
11 | | frgpnabl.m |
. . . . . . . . 9
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
12 | | frgpnabl.t |
. . . . . . . . 9
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
13 | | frgpnabl.u |
. . . . . . . . 9
⊢ 𝑈 =
(varFGrp‘𝐼) |
14 | | frgpnabl.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
15 | | frgpnabl.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ 𝐼) |
16 | 7, 8, 9, 10, 11, 12, 4, 13, 14, 15, 1 | frgpnabllem1 19389 |
. . . . . . . 8
⊢ (𝜑 → 〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉
∈ (𝐷 ∩ ((𝑈‘𝐵) + (𝑈‘𝐴)))) |
17 | 16 | elin1d 4128 |
. . . . . . 7
⊢ (𝜑 → 〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉
∈ 𝐷) |
18 | 6, 17 | sselid 3915 |
. . . . . 6
⊢ (𝜑 → 〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉
∈ 𝑊) |
19 | | eqid 2738 |
. . . . . . 7
⊢ (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
20 | 8, 9, 11, 12, 4, 19 | efgredeu 19273 |
. . . . . 6
⊢
(〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉 ∈ 𝑊 → ∃!𝑑 ∈ 𝐷 𝑑 ∼
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉) |
21 | | reurmo 3354 |
. . . . . 6
⊢
(∃!𝑑 ∈
𝐷 𝑑 ∼
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉 → ∃*𝑑 ∈ 𝐷 𝑑 ∼
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉) |
22 | 18, 20, 21 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ∃*𝑑 ∈ 𝐷 𝑑 ∼
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉) |
23 | 7, 8, 9, 10, 11, 12, 4, 13, 14, 1, 15 | frgpnabllem1 19389 |
. . . . . 6
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ (𝐷 ∩ ((𝑈‘𝐴) + (𝑈‘𝐵)))) |
24 | 23 | elin1d 4128 |
. . . . 5
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ 𝐷) |
25 | 8, 9 | efger 19239 |
. . . . . . . . 9
⊢ ∼ Er
𝑊 |
26 | 25 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ∼ Er 𝑊) |
27 | 7 | frgpgrp 19283 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ 𝑉 → 𝐺 ∈ Grp) |
28 | 14, 27 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ Grp) |
29 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐺) =
(Base‘𝐺) |
30 | 9, 13, 7, 29 | vrgpf 19289 |
. . . . . . . . . . . 12
⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶(Base‘𝐺)) |
31 | 14, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈:𝐼⟶(Base‘𝐺)) |
32 | 31, 1 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑈‘𝐴) ∈ (Base‘𝐺)) |
33 | 31, 15 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑈‘𝐵) ∈ (Base‘𝐺)) |
34 | 29, 10 | grpcl 18500 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑈‘𝐴) ∈ (Base‘𝐺) ∧ (𝑈‘𝐵) ∈ (Base‘𝐺)) → ((𝑈‘𝐴) + (𝑈‘𝐵)) ∈ (Base‘𝐺)) |
35 | 28, 32, 33, 34 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑈‘𝐴) + (𝑈‘𝐵)) ∈ (Base‘𝐺)) |
36 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(freeMnd‘(𝐼
× 2o)) = (freeMnd‘(𝐼 × 2o)) |
37 | 7, 36, 9 | frgpval 19279 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ 𝑉 → 𝐺 = ((freeMnd‘(𝐼 × 2o))
/s ∼ )) |
38 | 14, 37 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 = ((freeMnd‘(𝐼 × 2o))
/s ∼ )) |
39 | | 2on 8275 |
. . . . . . . . . . . . . 14
⊢
2o ∈ On |
40 | | xpexg 7578 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) →
(𝐼 × 2o)
∈ V) |
41 | 14, 39, 40 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐼 × 2o) ∈
V) |
42 | | wrdexg 14155 |
. . . . . . . . . . . . 13
⊢ ((𝐼 × 2o) ∈ V
→ Word (𝐼 ×
2o) ∈ V) |
43 | | fvi 6826 |
. . . . . . . . . . . . 13
⊢ (Word
(𝐼 × 2o)
∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 ×
2o)) |
44 | 41, 42, 43 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word
(𝐼 ×
2o)) |
45 | 8, 44 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 = Word (𝐼 × 2o)) |
46 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Base‘(freeMnd‘(𝐼 × 2o))) =
(Base‘(freeMnd‘(𝐼 × 2o))) |
47 | 36, 46 | frmdbas 18406 |
. . . . . . . . . . . 12
⊢ ((𝐼 × 2o) ∈ V
→ (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 ×
2o)) |
48 | 41, 47 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 ×
2o)) |
49 | 45, 48 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 = (Base‘(freeMnd‘(𝐼 ×
2o)))) |
50 | 9 | fvexi 6770 |
. . . . . . . . . . 11
⊢ ∼ ∈
V |
51 | 50 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ∼ ∈
V) |
52 | | fvexd 6771 |
. . . . . . . . . 10
⊢ (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈
V) |
53 | 38, 49, 51, 52 | qusbas 17173 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 / ∼ ) =
(Base‘𝐺)) |
54 | 35, 53 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (𝜑 → ((𝑈‘𝐴) + (𝑈‘𝐵)) ∈ (𝑊 / ∼ )) |
55 | 23 | elin2d 4129 |
. . . . . . . 8
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ((𝑈‘𝐴) + (𝑈‘𝐵))) |
56 | | qsel 8543 |
. . . . . . . 8
⊢ (( ∼ Er
𝑊 ∧ ((𝑈‘𝐴) + (𝑈‘𝐵)) ∈ (𝑊 / ∼ ) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ((𝑈‘𝐴) + (𝑈‘𝐵))) → ((𝑈‘𝐴) + (𝑈‘𝐵)) = [〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉] ∼
) |
57 | 26, 54, 55, 56 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → ((𝑈‘𝐴) + (𝑈‘𝐵)) = [〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉] ∼
) |
58 | 16 | elin2d 4129 |
. . . . . . . . 9
⊢ (𝜑 → 〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉
∈ ((𝑈‘𝐵) + (𝑈‘𝐴))) |
59 | | frgpnabl.n |
. . . . . . . . 9
⊢ (𝜑 → ((𝑈‘𝐴) + (𝑈‘𝐵)) = ((𝑈‘𝐵) + (𝑈‘𝐴))) |
60 | 58, 59 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (𝜑 → 〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉
∈ ((𝑈‘𝐴) + (𝑈‘𝐵))) |
61 | | qsel 8543 |
. . . . . . . 8
⊢ (( ∼ Er
𝑊 ∧ ((𝑈‘𝐴) + (𝑈‘𝐵)) ∈ (𝑊 / ∼ ) ∧
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉 ∈ ((𝑈‘𝐴) + (𝑈‘𝐵))) → ((𝑈‘𝐴) + (𝑈‘𝐵)) = [〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉] ∼
) |
62 | 26, 54, 60, 61 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → ((𝑈‘𝐴) + (𝑈‘𝐵)) = [〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉] ∼
) |
63 | 57, 62 | eqtr3d 2780 |
. . . . . 6
⊢ (𝜑 → [〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉]
∼
= [〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉] ∼ ) |
64 | 6, 24 | sselid 3915 |
. . . . . . 7
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ 𝑊) |
65 | 26, 64 | erth 8505 |
. . . . . 6
⊢ (𝜑 → (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∼
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉 ↔ [〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉] ∼ =
[〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉] ∼ )) |
66 | 63, 65 | mpbird 256 |
. . . . 5
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∼
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉) |
67 | 26, 18 | erref 8476 |
. . . . 5
⊢ (𝜑 → 〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉
∼
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉) |
68 | | breq1 5073 |
. . . . . 6
⊢ (𝑑 = 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
→ (𝑑 ∼
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉 ↔ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∼
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉)) |
69 | | breq1 5073 |
. . . . . 6
⊢ (𝑑 = 〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉
→ (𝑑 ∼
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉 ↔ 〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉 ∼
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉)) |
70 | 68, 69 | rmoi 3820 |
. . . . 5
⊢
((∃*𝑑 ∈
𝐷 𝑑 ∼
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉 ∧ (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ 𝐷 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∼
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉) ∧ (〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉 ∈ 𝐷 ∧ 〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉
∼
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉)) → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 =
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉) |
71 | 22, 24, 66, 17, 67, 70 | syl122anc 1377 |
. . . 4
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 =
〈“〈𝐵,
∅〉〈𝐴,
∅〉”〉) |
72 | 71 | fveq1d 6758 |
. . 3
⊢ (𝜑 → (〈“〈𝐴, ∅〉〈𝐵,
∅〉”〉‘0) = (〈“〈𝐵, ∅〉〈𝐴,
∅〉”〉‘0)) |
73 | | opex 5373 |
. . . 4
⊢
〈𝐴,
∅〉 ∈ V |
74 | | s2fv0 14528 |
. . . 4
⊢
(〈𝐴,
∅〉 ∈ V → (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉‘0) =
〈𝐴,
∅〉) |
75 | 73, 74 | ax-mp 5 |
. . 3
⊢
(〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉‘0) =
〈𝐴,
∅〉 |
76 | | opex 5373 |
. . . 4
⊢
〈𝐵,
∅〉 ∈ V |
77 | | s2fv0 14528 |
. . . 4
⊢
(〈𝐵,
∅〉 ∈ V → (〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉‘0) =
〈𝐵,
∅〉) |
78 | 76, 77 | ax-mp 5 |
. . 3
⊢
(〈“〈𝐵, ∅〉〈𝐴, ∅〉”〉‘0) =
〈𝐵,
∅〉 |
79 | 72, 75, 78 | 3eqtr3g 2802 |
. 2
⊢ (𝜑 → 〈𝐴, ∅〉 = 〈𝐵, ∅〉) |
80 | | opthg 5386 |
. . 3
⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ V) → (〈𝐴, ∅〉 = 〈𝐵, ∅〉 ↔ (𝐴 = 𝐵 ∧ ∅ = ∅))) |
81 | 80 | simprbda 498 |
. 2
⊢ (((𝐴 ∈ 𝐼 ∧ ∅ ∈ V) ∧ 〈𝐴, ∅〉 = 〈𝐵, ∅〉) → 𝐴 = 𝐵) |
82 | 1, 3, 79, 81 | syl21anc 834 |
1
⊢ (𝜑 → 𝐴 = 𝐵) |