MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpnabllem2 Structured version   Visualization version   GIF version

Theorem frgpnabllem2 18478
Description: Lemma for frgpnabl 18479. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
frgpnabl.g 𝐺 = (freeGrp‘𝐼)
frgpnabl.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
frgpnabl.r = ( ~FG𝐼)
frgpnabl.p + = (+g𝐺)
frgpnabl.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
frgpnabl.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
frgpnabl.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
frgpnabl.u 𝑈 = (varFGrp𝐼)
frgpnabl.i (𝜑𝐼 ∈ V)
frgpnabl.a (𝜑𝐴𝐼)
frgpnabl.b (𝜑𝐵𝐼)
frgpnabl.n (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = ((𝑈𝐵) + (𝑈𝐴)))
Assertion
Ref Expression
frgpnabllem2 (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑣,𝑛,𝑤,𝑥,𝑦,𝑧,𝐼   𝜑,𝑥   𝑥, ,𝑦,𝑧   𝑥,𝐵   𝑛,𝑊,𝑣,𝑤,𝑥,𝑦,𝑧   𝑥,𝐺   𝑛,𝑀,𝑣,𝑤,𝑥   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐵(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   + (𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   𝐺(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem frgpnabllem2
Dummy variables 𝑑 𝑚 𝑡 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpnabl.a . 2 (𝜑𝐴𝐼)
2 0ex 4984 . . 3 ∅ ∈ V
32a1i 11 . 2 (𝜑 → ∅ ∈ V)
4 frgpnabl.d . . . . . . . 8 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
5 difss 3936 . . . . . . . 8 (𝑊 𝑥𝑊 ran (𝑇𝑥)) ⊆ 𝑊
64, 5eqsstri 3832 . . . . . . 7 𝐷𝑊
7 inss1 4029 . . . . . . . 8 (𝐷 ∩ ((𝑈𝐵) + (𝑈𝐴))) ⊆ 𝐷
8 frgpnabl.g . . . . . . . . 9 𝐺 = (freeGrp‘𝐼)
9 frgpnabl.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
10 frgpnabl.r . . . . . . . . 9 = ( ~FG𝐼)
11 frgpnabl.p . . . . . . . . 9 + = (+g𝐺)
12 frgpnabl.m . . . . . . . . 9 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
13 frgpnabl.t . . . . . . . . 9 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
14 frgpnabl.u . . . . . . . . 9 𝑈 = (varFGrp𝐼)
15 frgpnabl.i . . . . . . . . 9 (𝜑𝐼 ∈ V)
16 frgpnabl.b . . . . . . . . 9 (𝜑𝐵𝐼)
178, 9, 10, 11, 12, 13, 4, 14, 15, 16, 1frgpnabllem1 18477 . . . . . . . 8 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐵) + (𝑈𝐴))))
187, 17sseldi 3796 . . . . . . 7 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝐷)
196, 18sseldi 3796 . . . . . 6 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝑊)
20 eqid 2806 . . . . . . 7 (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
219, 10, 12, 13, 4, 20efgredeu 18366 . . . . . 6 (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝑊 → ∃!𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
22 reurmo 3350 . . . . . 6 (∃!𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ → ∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
2319, 21, 223syl 18 . . . . 5 (𝜑 → ∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
24 inss1 4029 . . . . . 6 (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))) ⊆ 𝐷
258, 9, 10, 11, 12, 13, 4, 14, 15, 1, 16frgpnabllem1 18477 . . . . . 6 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))))
2624, 25sseldi 3796 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝐷)
279, 10efger 18332 . . . . . . . . 9 Er 𝑊
2827a1i 11 . . . . . . . 8 (𝜑 Er 𝑊)
298frgpgrp 18376 . . . . . . . . . . 11 (𝐼 ∈ V → 𝐺 ∈ Grp)
3015, 29syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
31 eqid 2806 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
3210, 14, 8, 31vrgpf 18382 . . . . . . . . . . . 12 (𝐼 ∈ V → 𝑈:𝐼⟶(Base‘𝐺))
3315, 32syl 17 . . . . . . . . . . 11 (𝜑𝑈:𝐼⟶(Base‘𝐺))
3433, 1ffvelrnd 6582 . . . . . . . . . 10 (𝜑 → (𝑈𝐴) ∈ (Base‘𝐺))
3533, 16ffvelrnd 6582 . . . . . . . . . 10 (𝜑 → (𝑈𝐵) ∈ (Base‘𝐺))
3631, 11grpcl 17635 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑈𝐴) ∈ (Base‘𝐺) ∧ (𝑈𝐵) ∈ (Base‘𝐺)) → ((𝑈𝐴) + (𝑈𝐵)) ∈ (Base‘𝐺))
3730, 34, 35, 36syl3anc 1483 . . . . . . . . 9 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) ∈ (Base‘𝐺))
38 eqid 2806 . . . . . . . . . . . 12 (freeMnd‘(𝐼 × 2𝑜)) = (freeMnd‘(𝐼 × 2𝑜))
398, 38, 10frgpval 18372 . . . . . . . . . . 11 (𝐼 ∈ V → 𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ))
4015, 39syl 17 . . . . . . . . . 10 (𝜑𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ))
41 2on 7805 . . . . . . . . . . . . . 14 2𝑜 ∈ On
42 xpexg 7190 . . . . . . . . . . . . . 14 ((𝐼 ∈ V ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V)
4315, 41, 42sylancl 576 . . . . . . . . . . . . 13 (𝜑 → (𝐼 × 2𝑜) ∈ V)
44 wrdexg 13526 . . . . . . . . . . . . 13 ((𝐼 × 2𝑜) ∈ V → Word (𝐼 × 2𝑜) ∈ V)
45 fvi 6476 . . . . . . . . . . . . 13 (Word (𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
4643, 44, 453syl 18 . . . . . . . . . . . 12 (𝜑 → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
479, 46syl5eq 2852 . . . . . . . . . . 11 (𝜑𝑊 = Word (𝐼 × 2𝑜))
48 eqid 2806 . . . . . . . . . . . . 13 (Base‘(freeMnd‘(𝐼 × 2𝑜))) = (Base‘(freeMnd‘(𝐼 × 2𝑜)))
4938, 48frmdbas 17594 . . . . . . . . . . . 12 ((𝐼 × 2𝑜) ∈ V → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜))
5043, 49syl 17 . . . . . . . . . . 11 (𝜑 → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜))
5147, 50eqtr4d 2843 . . . . . . . . . 10 (𝜑𝑊 = (Base‘(freeMnd‘(𝐼 × 2𝑜))))
5210fvexi 6422 . . . . . . . . . . 11 ∈ V
5352a1i 11 . . . . . . . . . 10 (𝜑 ∈ V)
54 fvexd 6423 . . . . . . . . . 10 (𝜑 → (freeMnd‘(𝐼 × 2𝑜)) ∈ V)
5540, 51, 53, 54qusbas 16410 . . . . . . . . 9 (𝜑 → (𝑊 / ) = (Base‘𝐺))
5637, 55eleqtrrd 2888 . . . . . . . 8 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ))
57 inss2 4030 . . . . . . . . 9 (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))) ⊆ ((𝑈𝐴) + (𝑈𝐵))
5857, 25sseldi 3796 . . . . . . . 8 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵)))
59 qsel 8061 . . . . . . . 8 (( Er 𝑊 ∧ ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵))) → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] )
6028, 56, 58, 59syl3anc 1483 . . . . . . 7 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] )
61 inss2 4030 . . . . . . . . . 10 (𝐷 ∩ ((𝑈𝐵) + (𝑈𝐴))) ⊆ ((𝑈𝐵) + (𝑈𝐴))
6261, 17sseldi 3796 . . . . . . . . 9 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐵) + (𝑈𝐴)))
63 frgpnabl.n . . . . . . . . 9 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = ((𝑈𝐵) + (𝑈𝐴)))
6462, 63eleqtrrd 2888 . . . . . . . 8 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵)))
65 qsel 8061 . . . . . . . 8 (( Er 𝑊 ∧ ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ) ∧ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵))) → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
6628, 56, 64, 65syl3anc 1483 . . . . . . 7 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
6760, 66eqtr3d 2842 . . . . . 6 (𝜑 → [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
686, 26sseldi 3796 . . . . . . 7 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝑊)
6928, 68erth 8026 . . . . . 6 (𝜑 → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] ))
7067, 69mpbird 248 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
7128, 19erref 7999 . . . . 5 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
72 breq1 4847 . . . . . 6 (𝑑 = ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ → (𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩))
73 breq1 4847 . . . . . 6 (𝑑 = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ → (𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩))
7472, 73rmoi 3725 . . . . 5 ((∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∧ (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝐷 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩) ∧ (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝐷 ∧ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)) → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
7523, 26, 70, 18, 71, 74syl122anc 1491 . . . 4 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
7675fveq1d 6410 . . 3 (𝜑 → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0))
77 opex 5122 . . . 4 𝐴, ∅⟩ ∈ V
78 s2fv0 13856 . . . 4 (⟨𝐴, ∅⟩ ∈ V → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩)
7977, 78ax-mp 5 . . 3 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩
80 opex 5122 . . . 4 𝐵, ∅⟩ ∈ V
81 s2fv0 13856 . . . 4 (⟨𝐵, ∅⟩ ∈ V → (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0) = ⟨𝐵, ∅⟩)
8280, 81ax-mp 5 . . 3 (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0) = ⟨𝐵, ∅⟩
8376, 79, 823eqtr3g 2863 . 2 (𝜑 → ⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩)
84 opthg 5135 . . 3 ((𝐴𝐼 ∧ ∅ ∈ V) → (⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩ ↔ (𝐴 = 𝐵 ∧ ∅ = ∅)))
8584simprbda 488 . 2 (((𝐴𝐼 ∧ ∅ ∈ V) ∧ ⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩) → 𝐴 = 𝐵)
861, 3, 83, 85syl21anc 857 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2156  wral 3096  ∃!wreu 3098  ∃*wrmo 3099  {crab 3100  Vcvv 3391  cdif 3766  cin 3768  c0 4116  {csn 4370  cop 4376  cotp 4378   ciun 4712   class class class wbr 4844  cmpt 4923   I cid 5218   × cxp 5309  ran crn 5312  Oncon0 5936  wf 6097  cfv 6101  (class class class)co 6874  cmpt2 6876  1𝑜c1o 7789  2𝑜c2o 7790   Er wer 7976  [cec 7977   / cqs 7978  0cc0 10221  1c1 10222  cmin 10551  ...cfz 12549  ..^cfzo 12689  chash 13337  Word cword 13502   splice csplice 13507  ⟨“cs2 13810  Basecbs 16068  +gcplusg 16153   /s cqus 16370  freeMndcfrmd 17589  Grpcgrp 17627   ~FG cefg 18320  freeGrpcfrgp 18321  varFGrpcvrgp 18322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-ot 4379  df-uni 4631  df-int 4670  df-iun 4714  df-iin 4715  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-2o 7797  df-oadd 7800  df-er 7979  df-ec 7981  df-qs 7985  df-map 8094  df-pm 8095  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-sup 8587  df-inf 8588  df-card 9048  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-2 11364  df-3 11365  df-4 11366  df-5 11367  df-6 11368  df-7 11369  df-8 11370  df-9 11371  df-n0 11560  df-xnn0 11630  df-z 11644  df-dec 11760  df-uz 11905  df-rp 12047  df-fz 12550  df-fzo 12690  df-hash 13338  df-word 13510  df-lsw 13511  df-concat 13512  df-s1 13513  df-substr 13514  df-splice 13515  df-reverse 13516  df-s2 13817  df-struct 16070  df-ndx 16071  df-slot 16072  df-base 16074  df-plusg 16166  df-mulr 16167  df-sca 16169  df-vsca 16170  df-ip 16171  df-tset 16172  df-ple 16173  df-ds 16175  df-0g 16307  df-imas 16373  df-qus 16374  df-mgm 17447  df-sgrp 17489  df-mnd 17500  df-frmd 17591  df-grp 17630  df-efg 18323  df-frgp 18324  df-vrgp 18325
This theorem is referenced by:  frgpnabl  18479
  Copyright terms: Public domain W3C validator