MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpnabllem2 Structured version   Visualization version   GIF version

Theorem frgpnabllem2 19916
Description: Lemma for frgpnabl 19917. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 25-Apr-2024.)
Hypotheses
Ref Expression
frgpnabl.g 𝐺 = (freeGrp‘𝐼)
frgpnabl.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpnabl.r = ( ~FG𝐼)
frgpnabl.p + = (+g𝐺)
frgpnabl.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
frgpnabl.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
frgpnabl.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
frgpnabl.u 𝑈 = (varFGrp𝐼)
frgpnabl.i (𝜑𝐼𝑉)
frgpnabl.a (𝜑𝐴𝐼)
frgpnabl.b (𝜑𝐵𝐼)
frgpnabl.n (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = ((𝑈𝐵) + (𝑈𝐴)))
Assertion
Ref Expression
frgpnabllem2 (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑣,𝑛,𝑤,𝑥,𝑦,𝑧,𝐼   𝜑,𝑥   𝑥, ,𝑦,𝑧   𝑥,𝐵   𝑛,𝑊,𝑣,𝑤,𝑥,𝑦,𝑧   𝑥,𝐺   𝑛,𝑀,𝑣,𝑤,𝑥   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐵(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   + (𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   𝐺(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)

Proof of Theorem frgpnabllem2
Dummy variables 𝑑 𝑚 𝑡 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpnabl.a . 2 (𝜑𝐴𝐼)
2 0ex 5325 . . 3 ∅ ∈ V
32a1i 11 . 2 (𝜑 → ∅ ∈ V)
4 frgpnabl.d . . . . . . . 8 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
5 difss 4159 . . . . . . . 8 (𝑊 𝑥𝑊 ran (𝑇𝑥)) ⊆ 𝑊
64, 5eqsstri 4043 . . . . . . 7 𝐷𝑊
7 frgpnabl.g . . . . . . . . 9 𝐺 = (freeGrp‘𝐼)
8 frgpnabl.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
9 frgpnabl.r . . . . . . . . 9 = ( ~FG𝐼)
10 frgpnabl.p . . . . . . . . 9 + = (+g𝐺)
11 frgpnabl.m . . . . . . . . 9 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
12 frgpnabl.t . . . . . . . . 9 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
13 frgpnabl.u . . . . . . . . 9 𝑈 = (varFGrp𝐼)
14 frgpnabl.i . . . . . . . . 9 (𝜑𝐼𝑉)
15 frgpnabl.b . . . . . . . . 9 (𝜑𝐵𝐼)
167, 8, 9, 10, 11, 12, 4, 13, 14, 15, 1frgpnabllem1 19915 . . . . . . . 8 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐵) + (𝑈𝐴))))
1716elin1d 4227 . . . . . . 7 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝐷)
186, 17sselid 4006 . . . . . 6 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝑊)
19 eqid 2740 . . . . . . 7 (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
208, 9, 11, 12, 4, 19efgredeu 19794 . . . . . 6 (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝑊 → ∃!𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
21 reurmo 3391 . . . . . 6 (∃!𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ → ∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
2218, 20, 213syl 18 . . . . 5 (𝜑 → ∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
237, 8, 9, 10, 11, 12, 4, 13, 14, 1, 15frgpnabllem1 19915 . . . . . 6 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))))
2423elin1d 4227 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝐷)
258, 9efger 19760 . . . . . . . . 9 Er 𝑊
2625a1i 11 . . . . . . . 8 (𝜑 Er 𝑊)
277frgpgrp 19804 . . . . . . . . . . 11 (𝐼𝑉𝐺 ∈ Grp)
2814, 27syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
29 eqid 2740 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
309, 13, 7, 29vrgpf 19810 . . . . . . . . . . . 12 (𝐼𝑉𝑈:𝐼⟶(Base‘𝐺))
3114, 30syl 17 . . . . . . . . . . 11 (𝜑𝑈:𝐼⟶(Base‘𝐺))
3231, 1ffvelcdmd 7119 . . . . . . . . . 10 (𝜑 → (𝑈𝐴) ∈ (Base‘𝐺))
3331, 15ffvelcdmd 7119 . . . . . . . . . 10 (𝜑 → (𝑈𝐵) ∈ (Base‘𝐺))
3429, 10grpcl 18981 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑈𝐴) ∈ (Base‘𝐺) ∧ (𝑈𝐵) ∈ (Base‘𝐺)) → ((𝑈𝐴) + (𝑈𝐵)) ∈ (Base‘𝐺))
3528, 32, 33, 34syl3anc 1371 . . . . . . . . 9 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) ∈ (Base‘𝐺))
36 eqid 2740 . . . . . . . . . . . 12 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
377, 36, 9frgpval 19800 . . . . . . . . . . 11 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
3814, 37syl 17 . . . . . . . . . 10 (𝜑𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
39 2on 8536 . . . . . . . . . . . . . 14 2o ∈ On
40 xpexg 7785 . . . . . . . . . . . . . 14 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
4114, 39, 40sylancl 585 . . . . . . . . . . . . 13 (𝜑 → (𝐼 × 2o) ∈ V)
42 wrdexg 14572 . . . . . . . . . . . . 13 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
43 fvi 6998 . . . . . . . . . . . . 13 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
4441, 42, 433syl 18 . . . . . . . . . . . 12 (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
458, 44eqtrid 2792 . . . . . . . . . . 11 (𝜑𝑊 = Word (𝐼 × 2o))
46 eqid 2740 . . . . . . . . . . . . 13 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
4736, 46frmdbas 18887 . . . . . . . . . . . 12 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
4841, 47syl 17 . . . . . . . . . . 11 (𝜑 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
4945, 48eqtr4d 2783 . . . . . . . . . 10 (𝜑𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
509fvexi 6934 . . . . . . . . . . 11 ∈ V
5150a1i 11 . . . . . . . . . 10 (𝜑 ∈ V)
52 fvexd 6935 . . . . . . . . . 10 (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈ V)
5338, 49, 51, 52qusbas 17605 . . . . . . . . 9 (𝜑 → (𝑊 / ) = (Base‘𝐺))
5435, 53eleqtrrd 2847 . . . . . . . 8 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ))
5523elin2d 4228 . . . . . . . 8 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵)))
56 qsel 8854 . . . . . . . 8 (( Er 𝑊 ∧ ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵))) → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] )
5726, 54, 55, 56syl3anc 1371 . . . . . . 7 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] )
5816elin2d 4228 . . . . . . . . 9 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐵) + (𝑈𝐴)))
59 frgpnabl.n . . . . . . . . 9 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = ((𝑈𝐵) + (𝑈𝐴)))
6058, 59eleqtrrd 2847 . . . . . . . 8 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵)))
61 qsel 8854 . . . . . . . 8 (( Er 𝑊 ∧ ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ) ∧ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵))) → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
6226, 54, 60, 61syl3anc 1371 . . . . . . 7 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
6357, 62eqtr3d 2782 . . . . . 6 (𝜑 → [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
646, 24sselid 4006 . . . . . . 7 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝑊)
6526, 64erth 8814 . . . . . 6 (𝜑 → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] ))
6663, 65mpbird 257 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
6726, 18erref 8783 . . . . 5 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
68 breq1 5169 . . . . . 6 (𝑑 = ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ → (𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩))
69 breq1 5169 . . . . . 6 (𝑑 = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ → (𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩))
7068, 69rmoi 3913 . . . . 5 ((∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∧ (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝐷 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩) ∧ (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝐷 ∧ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)) → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
7122, 24, 66, 17, 67, 70syl122anc 1379 . . . 4 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
7271fveq1d 6922 . . 3 (𝜑 → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0))
73 opex 5484 . . . 4 𝐴, ∅⟩ ∈ V
74 s2fv0 14936 . . . 4 (⟨𝐴, ∅⟩ ∈ V → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩)
7573, 74ax-mp 5 . . 3 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩
76 opex 5484 . . . 4 𝐵, ∅⟩ ∈ V
77 s2fv0 14936 . . . 4 (⟨𝐵, ∅⟩ ∈ V → (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0) = ⟨𝐵, ∅⟩)
7876, 77ax-mp 5 . . 3 (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0) = ⟨𝐵, ∅⟩
7972, 75, 783eqtr3g 2803 . 2 (𝜑 → ⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩)
80 opthg 5497 . . 3 ((𝐴𝐼 ∧ ∅ ∈ V) → (⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩ ↔ (𝐴 = 𝐵 ∧ ∅ = ∅)))
8180simprbda 498 . 2 (((𝐴𝐼 ∧ ∅ ∈ V) ∧ ⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩) → 𝐴 = 𝐵)
821, 3, 79, 81syl21anc 837 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  ∃!wreu 3386  ∃*wrmo 3387  {crab 3443  Vcvv 3488  cdif 3973  c0 4352  {csn 4648  cop 4654  cotp 4656   ciun 5015   class class class wbr 5166  cmpt 5249   I cid 5592   × cxp 5698  ran crn 5701  Oncon0 6395  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  1oc1o 8515  2oc2o 8516   Er wer 8760  [cec 8761   / cqs 8762  0cc0 11184  1c1 11185  cmin 11520  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562   splice csplice 14797  ⟨“cs2 14890  Basecbs 17258  +gcplusg 17311   /s cqus 17565  freeMndcfrmd 18882  Grpcgrp 18973   ~FG cefg 19748  freeGrpcfrgp 19749  varFGrpcvrgp 19750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-frmd 18884  df-grp 18976  df-efg 19751  df-frgp 19752  df-vrgp 19753
This theorem is referenced by:  frgpnabl  19917
  Copyright terms: Public domain W3C validator