Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpnabllem2 Structured version   Visualization version   GIF version

Theorem frgpnabllem2 18972
 Description: Lemma for frgpnabl 18973. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 25-Apr-2024.)
Hypotheses
Ref Expression
frgpnabl.g 𝐺 = (freeGrp‘𝐼)
frgpnabl.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpnabl.r = ( ~FG𝐼)
frgpnabl.p + = (+g𝐺)
frgpnabl.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
frgpnabl.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
frgpnabl.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
frgpnabl.u 𝑈 = (varFGrp𝐼)
frgpnabl.i (𝜑𝐼𝑉)
frgpnabl.a (𝜑𝐴𝐼)
frgpnabl.b (𝜑𝐵𝐼)
frgpnabl.n (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = ((𝑈𝐵) + (𝑈𝐴)))
Assertion
Ref Expression
frgpnabllem2 (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑣,𝑛,𝑤,𝑥,𝑦,𝑧,𝐼   𝜑,𝑥   𝑥, ,𝑦,𝑧   𝑥,𝐵   𝑛,𝑊,𝑣,𝑤,𝑥,𝑦,𝑧   𝑥,𝐺   𝑛,𝑀,𝑣,𝑤,𝑥   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐵(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   + (𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   𝐺(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)

Proof of Theorem frgpnabllem2
Dummy variables 𝑑 𝑚 𝑡 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpnabl.a . 2 (𝜑𝐴𝐼)
2 0ex 5184 . . 3 ∅ ∈ V
32a1i 11 . 2 (𝜑 → ∅ ∈ V)
4 frgpnabl.d . . . . . . . 8 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
5 difss 4084 . . . . . . . 8 (𝑊 𝑥𝑊 ran (𝑇𝑥)) ⊆ 𝑊
64, 5eqsstri 3977 . . . . . . 7 𝐷𝑊
7 frgpnabl.g . . . . . . . . 9 𝐺 = (freeGrp‘𝐼)
8 frgpnabl.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
9 frgpnabl.r . . . . . . . . 9 = ( ~FG𝐼)
10 frgpnabl.p . . . . . . . . 9 + = (+g𝐺)
11 frgpnabl.m . . . . . . . . 9 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
12 frgpnabl.t . . . . . . . . 9 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
13 frgpnabl.u . . . . . . . . 9 𝑈 = (varFGrp𝐼)
14 frgpnabl.i . . . . . . . . 9 (𝜑𝐼𝑉)
15 frgpnabl.b . . . . . . . . 9 (𝜑𝐵𝐼)
167, 8, 9, 10, 11, 12, 4, 13, 14, 15, 1frgpnabllem1 18971 . . . . . . . 8 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐵) + (𝑈𝐴))))
1716elin1d 4150 . . . . . . 7 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝐷)
186, 17sseldi 3941 . . . . . 6 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝑊)
19 eqid 2821 . . . . . . 7 (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
208, 9, 11, 12, 4, 19efgredeu 18856 . . . . . 6 (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝑊 → ∃!𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
21 reurmo 3410 . . . . . 6 (∃!𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ → ∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
2218, 20, 213syl 18 . . . . 5 (𝜑 → ∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
237, 8, 9, 10, 11, 12, 4, 13, 14, 1, 15frgpnabllem1 18971 . . . . . 6 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))))
2423elin1d 4150 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝐷)
258, 9efger 18822 . . . . . . . . 9 Er 𝑊
2625a1i 11 . . . . . . . 8 (𝜑 Er 𝑊)
277frgpgrp 18866 . . . . . . . . . . 11 (𝐼𝑉𝐺 ∈ Grp)
2814, 27syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
29 eqid 2821 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
309, 13, 7, 29vrgpf 18872 . . . . . . . . . . . 12 (𝐼𝑉𝑈:𝐼⟶(Base‘𝐺))
3114, 30syl 17 . . . . . . . . . . 11 (𝜑𝑈:𝐼⟶(Base‘𝐺))
3231, 1ffvelrnd 6825 . . . . . . . . . 10 (𝜑 → (𝑈𝐴) ∈ (Base‘𝐺))
3331, 15ffvelrnd 6825 . . . . . . . . . 10 (𝜑 → (𝑈𝐵) ∈ (Base‘𝐺))
3429, 10grpcl 18089 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑈𝐴) ∈ (Base‘𝐺) ∧ (𝑈𝐵) ∈ (Base‘𝐺)) → ((𝑈𝐴) + (𝑈𝐵)) ∈ (Base‘𝐺))
3528, 32, 33, 34syl3anc 1368 . . . . . . . . 9 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) ∈ (Base‘𝐺))
36 eqid 2821 . . . . . . . . . . . 12 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
377, 36, 9frgpval 18862 . . . . . . . . . . 11 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
3814, 37syl 17 . . . . . . . . . 10 (𝜑𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
39 2on 8086 . . . . . . . . . . . . . 14 2o ∈ On
40 xpexg 7448 . . . . . . . . . . . . . 14 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
4114, 39, 40sylancl 589 . . . . . . . . . . . . 13 (𝜑 → (𝐼 × 2o) ∈ V)
42 wrdexg 13855 . . . . . . . . . . . . 13 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
43 fvi 6713 . . . . . . . . . . . . 13 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
4441, 42, 433syl 18 . . . . . . . . . . . 12 (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
458, 44syl5eq 2868 . . . . . . . . . . 11 (𝜑𝑊 = Word (𝐼 × 2o))
46 eqid 2821 . . . . . . . . . . . . 13 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
4736, 46frmdbas 17995 . . . . . . . . . . . 12 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
4841, 47syl 17 . . . . . . . . . . 11 (𝜑 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
4945, 48eqtr4d 2859 . . . . . . . . . 10 (𝜑𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
509fvexi 6657 . . . . . . . . . . 11 ∈ V
5150a1i 11 . . . . . . . . . 10 (𝜑 ∈ V)
52 fvexd 6658 . . . . . . . . . 10 (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈ V)
5338, 49, 51, 52qusbas 16796 . . . . . . . . 9 (𝜑 → (𝑊 / ) = (Base‘𝐺))
5435, 53eleqtrrd 2915 . . . . . . . 8 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ))
5523elin2d 4151 . . . . . . . 8 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵)))
56 qsel 8351 . . . . . . . 8 (( Er 𝑊 ∧ ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵))) → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] )
5726, 54, 55, 56syl3anc 1368 . . . . . . 7 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] )
5816elin2d 4151 . . . . . . . . 9 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐵) + (𝑈𝐴)))
59 frgpnabl.n . . . . . . . . 9 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = ((𝑈𝐵) + (𝑈𝐴)))
6058, 59eleqtrrd 2915 . . . . . . . 8 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵)))
61 qsel 8351 . . . . . . . 8 (( Er 𝑊 ∧ ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ) ∧ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵))) → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
6226, 54, 60, 61syl3anc 1368 . . . . . . 7 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
6357, 62eqtr3d 2858 . . . . . 6 (𝜑 → [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
646, 24sseldi 3941 . . . . . . 7 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝑊)
6526, 64erth 8313 . . . . . 6 (𝜑 → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] ))
6663, 65mpbird 260 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
6726, 18erref 8284 . . . . 5 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
68 breq1 5042 . . . . . 6 (𝑑 = ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ → (𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩))
69 breq1 5042 . . . . . 6 (𝑑 = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ → (𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩))
7068, 69rmoi 3849 . . . . 5 ((∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∧ (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝐷 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩) ∧ (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝐷 ∧ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)) → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
7122, 24, 66, 17, 67, 70syl122anc 1376 . . . 4 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
7271fveq1d 6645 . . 3 (𝜑 → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0))
73 opex 5329 . . . 4 𝐴, ∅⟩ ∈ V
74 s2fv0 14228 . . . 4 (⟨𝐴, ∅⟩ ∈ V → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩)
7573, 74ax-mp 5 . . 3 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩
76 opex 5329 . . . 4 𝐵, ∅⟩ ∈ V
77 s2fv0 14228 . . . 4 (⟨𝐵, ∅⟩ ∈ V → (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0) = ⟨𝐵, ∅⟩)
7876, 77ax-mp 5 . . 3 (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0) = ⟨𝐵, ∅⟩
7972, 75, 783eqtr3g 2879 . 2 (𝜑 → ⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩)
80 opthg 5342 . . 3 ((𝐴𝐼 ∧ ∅ ∈ V) → (⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩ ↔ (𝐴 = 𝐵 ∧ ∅ = ∅)))
8180simprbda 502 . 2 (((𝐴𝐼 ∧ ∅ ∈ V) ∧ ⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩) → 𝐴 = 𝐵)
821, 3, 79, 81syl21anc 836 1 (𝜑𝐴 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3126  ∃!wreu 3128  ∃*wrmo 3129  {crab 3130  Vcvv 3471   ∖ cdif 3907  ∅c0 4266  {csn 4540  ⟨cop 4546  ⟨cotp 4548  ∪ ciun 4892   class class class wbr 5039   ↦ cmpt 5119   I cid 5432   × cxp 5526  ran crn 5529  Oncon0 6164  ⟶wf 6324  ‘cfv 6328  (class class class)co 7130   ∈ cmpo 7132  1oc1o 8070  2oc2o 8071   Er wer 8261  [cec 8262   / cqs 8263  0cc0 10514  1c1 10515   − cmin 10847  ...cfz 12875  ..^cfzo 13016  ♯chash 13674  Word cword 13845   splice csplice 14090  ⟨“cs2 14182  Basecbs 16461  +gcplusg 16543   /s cqus 16756  freeMndcfrmd 17990  Grpcgrp 18081   ~FG cefg 18810  freeGrpcfrgp 18811  varFGrpcvrgp 18812 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-ot 4549  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-ec 8266  df-qs 8270  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-sup 8882  df-inf 8883  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-xnn0 11946  df-z 11960  df-dec 12077  df-uz 12222  df-rp 12368  df-fz 12876  df-fzo 13017  df-hash 13675  df-word 13846  df-lsw 13894  df-concat 13902  df-s1 13929  df-substr 13982  df-pfx 14012  df-splice 14091  df-reverse 14100  df-s2 14189  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-plusg 16556  df-mulr 16557  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-0g 16693  df-imas 16759  df-qus 16760  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-frmd 17992  df-grp 18084  df-efg 18813  df-frgp 18814  df-vrgp 18815 This theorem is referenced by:  frgpnabl  18973
 Copyright terms: Public domain W3C validator