MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpnabllem2 Structured version   Visualization version   GIF version

Theorem frgpnabllem2 19475
Description: Lemma for frgpnabl 19476. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 25-Apr-2024.)
Hypotheses
Ref Expression
frgpnabl.g 𝐺 = (freeGrp‘𝐼)
frgpnabl.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpnabl.r = ( ~FG𝐼)
frgpnabl.p + = (+g𝐺)
frgpnabl.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
frgpnabl.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
frgpnabl.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
frgpnabl.u 𝑈 = (varFGrp𝐼)
frgpnabl.i (𝜑𝐼𝑉)
frgpnabl.a (𝜑𝐴𝐼)
frgpnabl.b (𝜑𝐵𝐼)
frgpnabl.n (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = ((𝑈𝐵) + (𝑈𝐴)))
Assertion
Ref Expression
frgpnabllem2 (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑣,𝑛,𝑤,𝑥,𝑦,𝑧,𝐼   𝜑,𝑥   𝑥, ,𝑦,𝑧   𝑥,𝐵   𝑛,𝑊,𝑣,𝑤,𝑥,𝑦,𝑧   𝑥,𝐺   𝑛,𝑀,𝑣,𝑤,𝑥   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐵(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   + (𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   𝐺(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)

Proof of Theorem frgpnabllem2
Dummy variables 𝑑 𝑚 𝑡 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpnabl.a . 2 (𝜑𝐴𝐼)
2 0ex 5231 . . 3 ∅ ∈ V
32a1i 11 . 2 (𝜑 → ∅ ∈ V)
4 frgpnabl.d . . . . . . . 8 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
5 difss 4066 . . . . . . . 8 (𝑊 𝑥𝑊 ran (𝑇𝑥)) ⊆ 𝑊
64, 5eqsstri 3955 . . . . . . 7 𝐷𝑊
7 frgpnabl.g . . . . . . . . 9 𝐺 = (freeGrp‘𝐼)
8 frgpnabl.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
9 frgpnabl.r . . . . . . . . 9 = ( ~FG𝐼)
10 frgpnabl.p . . . . . . . . 9 + = (+g𝐺)
11 frgpnabl.m . . . . . . . . 9 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
12 frgpnabl.t . . . . . . . . 9 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
13 frgpnabl.u . . . . . . . . 9 𝑈 = (varFGrp𝐼)
14 frgpnabl.i . . . . . . . . 9 (𝜑𝐼𝑉)
15 frgpnabl.b . . . . . . . . 9 (𝜑𝐵𝐼)
167, 8, 9, 10, 11, 12, 4, 13, 14, 15, 1frgpnabllem1 19474 . . . . . . . 8 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐵) + (𝑈𝐴))))
1716elin1d 4132 . . . . . . 7 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝐷)
186, 17sselid 3919 . . . . . 6 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝑊)
19 eqid 2738 . . . . . . 7 (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
208, 9, 11, 12, 4, 19efgredeu 19358 . . . . . 6 (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝑊 → ∃!𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
21 reurmo 3364 . . . . . 6 (∃!𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ → ∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
2218, 20, 213syl 18 . . . . 5 (𝜑 → ∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
237, 8, 9, 10, 11, 12, 4, 13, 14, 1, 15frgpnabllem1 19474 . . . . . 6 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))))
2423elin1d 4132 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝐷)
258, 9efger 19324 . . . . . . . . 9 Er 𝑊
2625a1i 11 . . . . . . . 8 (𝜑 Er 𝑊)
277frgpgrp 19368 . . . . . . . . . . 11 (𝐼𝑉𝐺 ∈ Grp)
2814, 27syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
29 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
309, 13, 7, 29vrgpf 19374 . . . . . . . . . . . 12 (𝐼𝑉𝑈:𝐼⟶(Base‘𝐺))
3114, 30syl 17 . . . . . . . . . . 11 (𝜑𝑈:𝐼⟶(Base‘𝐺))
3231, 1ffvelrnd 6962 . . . . . . . . . 10 (𝜑 → (𝑈𝐴) ∈ (Base‘𝐺))
3331, 15ffvelrnd 6962 . . . . . . . . . 10 (𝜑 → (𝑈𝐵) ∈ (Base‘𝐺))
3429, 10grpcl 18585 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑈𝐴) ∈ (Base‘𝐺) ∧ (𝑈𝐵) ∈ (Base‘𝐺)) → ((𝑈𝐴) + (𝑈𝐵)) ∈ (Base‘𝐺))
3528, 32, 33, 34syl3anc 1370 . . . . . . . . 9 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) ∈ (Base‘𝐺))
36 eqid 2738 . . . . . . . . . . . 12 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
377, 36, 9frgpval 19364 . . . . . . . . . . 11 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
3814, 37syl 17 . . . . . . . . . 10 (𝜑𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
39 2on 8311 . . . . . . . . . . . . . 14 2o ∈ On
40 xpexg 7600 . . . . . . . . . . . . . 14 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
4114, 39, 40sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (𝐼 × 2o) ∈ V)
42 wrdexg 14227 . . . . . . . . . . . . 13 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
43 fvi 6844 . . . . . . . . . . . . 13 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
4441, 42, 433syl 18 . . . . . . . . . . . 12 (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
458, 44eqtrid 2790 . . . . . . . . . . 11 (𝜑𝑊 = Word (𝐼 × 2o))
46 eqid 2738 . . . . . . . . . . . . 13 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
4736, 46frmdbas 18491 . . . . . . . . . . . 12 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
4841, 47syl 17 . . . . . . . . . . 11 (𝜑 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
4945, 48eqtr4d 2781 . . . . . . . . . 10 (𝜑𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
509fvexi 6788 . . . . . . . . . . 11 ∈ V
5150a1i 11 . . . . . . . . . 10 (𝜑 ∈ V)
52 fvexd 6789 . . . . . . . . . 10 (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈ V)
5338, 49, 51, 52qusbas 17256 . . . . . . . . 9 (𝜑 → (𝑊 / ) = (Base‘𝐺))
5435, 53eleqtrrd 2842 . . . . . . . 8 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ))
5523elin2d 4133 . . . . . . . 8 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵)))
56 qsel 8585 . . . . . . . 8 (( Er 𝑊 ∧ ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵))) → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] )
5726, 54, 55, 56syl3anc 1370 . . . . . . 7 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] )
5816elin2d 4133 . . . . . . . . 9 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐵) + (𝑈𝐴)))
59 frgpnabl.n . . . . . . . . 9 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = ((𝑈𝐵) + (𝑈𝐴)))
6058, 59eleqtrrd 2842 . . . . . . . 8 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵)))
61 qsel 8585 . . . . . . . 8 (( Er 𝑊 ∧ ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ) ∧ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵))) → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
6226, 54, 60, 61syl3anc 1370 . . . . . . 7 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
6357, 62eqtr3d 2780 . . . . . 6 (𝜑 → [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
646, 24sselid 3919 . . . . . . 7 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝑊)
6526, 64erth 8547 . . . . . 6 (𝜑 → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] ))
6663, 65mpbird 256 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
6726, 18erref 8518 . . . . 5 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
68 breq1 5077 . . . . . 6 (𝑑 = ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ → (𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩))
69 breq1 5077 . . . . . 6 (𝑑 = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ → (𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩))
7068, 69rmoi 3824 . . . . 5 ((∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∧ (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝐷 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩) ∧ (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝐷 ∧ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)) → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
7122, 24, 66, 17, 67, 70syl122anc 1378 . . . 4 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
7271fveq1d 6776 . . 3 (𝜑 → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0))
73 opex 5379 . . . 4 𝐴, ∅⟩ ∈ V
74 s2fv0 14600 . . . 4 (⟨𝐴, ∅⟩ ∈ V → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩)
7573, 74ax-mp 5 . . 3 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩
76 opex 5379 . . . 4 𝐵, ∅⟩ ∈ V
77 s2fv0 14600 . . . 4 (⟨𝐵, ∅⟩ ∈ V → (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0) = ⟨𝐵, ∅⟩)
7876, 77ax-mp 5 . . 3 (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0) = ⟨𝐵, ∅⟩
7972, 75, 783eqtr3g 2801 . 2 (𝜑 → ⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩)
80 opthg 5392 . . 3 ((𝐴𝐼 ∧ ∅ ∈ V) → (⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩ ↔ (𝐴 = 𝐵 ∧ ∅ = ∅)))
8180simprbda 499 . 2 (((𝐴𝐼 ∧ ∅ ∈ V) ∧ ⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩) → 𝐴 = 𝐵)
821, 3, 79, 81syl21anc 835 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  ∃!wreu 3066  ∃*wrmo 3067  {crab 3068  Vcvv 3432  cdif 3884  c0 4256  {csn 4561  cop 4567  cotp 4569   ciun 4924   class class class wbr 5074  cmpt 5157   I cid 5488   × cxp 5587  ran crn 5590  Oncon0 6266  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  1oc1o 8290  2oc2o 8291   Er wer 8495  [cec 8496   / cqs 8497  0cc0 10871  1c1 10872  cmin 11205  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   splice csplice 14462  ⟨“cs2 14554  Basecbs 16912  +gcplusg 16962   /s cqus 17216  freeMndcfrmd 18486  Grpcgrp 18577   ~FG cefg 19312  freeGrpcfrgp 19313  varFGrpcvrgp 19314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-reverse 14472  df-s2 14561  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-0g 17152  df-imas 17219  df-qus 17220  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-frmd 18488  df-grp 18580  df-efg 19315  df-frgp 19316  df-vrgp 19317
This theorem is referenced by:  frgpnabl  19476
  Copyright terms: Public domain W3C validator