| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rmorabex | Structured version Visualization version GIF version | ||
| Description: Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| rmorabex | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moabex 5446 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) | |
| 2 | df-rmo 3364 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rab 3421 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 4 | 3 | eleq1i 2824 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) |
| 5 | 1, 2, 4 | 3imtr4i 292 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∃*wmo 2536 {cab 2712 ∃*wrmo 3363 {crab 3420 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rmo 3364 df-rab 3421 df-v 3466 df-un 3938 df-in 3940 df-ss 3950 df-sn 4609 df-pr 4611 |
| This theorem is referenced by: supexd 9476 |
| Copyright terms: Public domain | W3C validator |