| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rmorabex | Structured version Visualization version GIF version | ||
| Description: Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| rmorabex | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moabex 5403 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) | |
| 2 | df-rmo 3347 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rab 3397 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 4 | 3 | eleq1i 2824 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) |
| 5 | 1, 2, 4 | 3imtr4i 292 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∃*wmo 2535 {cab 2711 ∃*wrmo 3346 {crab 3396 Vcvv 3437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-rmo 3347 df-rab 3397 df-v 3439 df-un 3903 df-in 3905 df-ss 3915 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: supexd 9348 |
| Copyright terms: Public domain | W3C validator |