MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmorabex Structured version   Visualization version   GIF version

Theorem rmorabex 5395
Description: Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017.)
Assertion
Ref Expression
rmorabex (∃*𝑥𝐴 𝜑 → {𝑥𝐴𝜑} ∈ V)

Proof of Theorem rmorabex
StepHypRef Expression
1 moabex 5394 . 2 (∃*𝑥(𝑥𝐴𝜑) → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
2 df-rmo 3346 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
3 df-rab 3396 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43eleq1i 2822 . 2 ({𝑥𝐴𝜑} ∈ V ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
51, 2, 43imtr4i 292 1 (∃*𝑥𝐴 𝜑 → {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  ∃*wmo 2533  {cab 2709  ∃*wrmo 3345  {crab 3395  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rmo 3346  df-rab 3396  df-v 3438  df-un 3902  df-in 3904  df-ss 3914  df-sn 4572  df-pr 4574
This theorem is referenced by:  supexd  9332
  Copyright terms: Public domain W3C validator