MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmorabex Structured version   Visualization version   GIF version

Theorem rmorabex 5447
Description: Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017.)
Assertion
Ref Expression
rmorabex (∃*𝑥𝐴 𝜑 → {𝑥𝐴𝜑} ∈ V)

Proof of Theorem rmorabex
StepHypRef Expression
1 moabex 5446 . 2 (∃*𝑥(𝑥𝐴𝜑) → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
2 df-rmo 3364 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
3 df-rab 3421 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43eleq1i 2824 . 2 ({𝑥𝐴𝜑} ∈ V ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
51, 2, 43imtr4i 292 1 (∃*𝑥𝐴 𝜑 → {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  ∃*wmo 2536  {cab 2712  ∃*wrmo 3363  {crab 3420  Vcvv 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-rmo 3364  df-rab 3421  df-v 3466  df-un 3938  df-in 3940  df-ss 3950  df-sn 4609  df-pr 4611
This theorem is referenced by:  supexd  9476
  Copyright terms: Public domain W3C validator