MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supexd Structured version   Visualization version   GIF version

Theorem supexd 9465
Description: A supremum is a set. (Contributed by NM, 22-May-1999.) (Revised by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
supmo.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
supexd (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ V)

Proof of Theorem supexd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 9454 . 2 sup(𝐵, 𝐴, 𝑅) = {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))}
2 supmo.1 . . . 4 (𝜑𝑅 Or 𝐴)
32supmo 9464 . . 3 (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
4 rmorabex 5435 . . 3 (∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} ∈ V)
5 uniexg 7734 . . 3 ({𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} ∈ V → {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} ∈ V)
63, 4, 53syl 18 . 2 (𝜑 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} ∈ V)
71, 6eqeltrid 2838 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wral 3051  wrex 3060  ∃*wrmo 3358  {crab 3415  Vcvv 3459   cuni 4883   class class class wbr 5119   Or wor 5560  supcsup 9452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rmo 3359  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-po 5561  df-so 5562  df-sup 9454
This theorem is referenced by:  supex  9476  infexd  9496  smflimsuplem7  46855  prproropf1olem4  47520
  Copyright terms: Public domain W3C validator