Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supexd | Structured version Visualization version GIF version |
Description: A supremum is a set. (Contributed by NM, 22-May-1999.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
supmo.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
Ref | Expression |
---|---|
supexd | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sup 9271 | . 2 ⊢ sup(𝐵, 𝐴, 𝑅) = ∪ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} | |
2 | supmo.1 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
3 | 2 | supmo 9281 | . . 3 ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
4 | rmorabex 5394 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ∈ V) | |
5 | uniexg 7633 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ∈ V → ∪ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ∈ V) | |
6 | 3, 4, 5 | 3syl 18 | . 2 ⊢ (𝜑 → ∪ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ∈ V) |
7 | 1, 6 | eqeltrid 2842 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2105 ∀wral 3062 ∃wrex 3071 ∃*wrmo 3349 {crab 3404 Vcvv 3441 ∪ cuni 4850 class class class wbr 5087 Or wor 5520 supcsup 9269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rmo 3350 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-po 5521 df-so 5522 df-sup 9271 |
This theorem is referenced by: supex 9292 infexd 9312 smflimsuplem7 44602 prproropf1olem4 45210 |
Copyright terms: Public domain | W3C validator |