Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspcsbnea Structured version   Visualization version   GIF version

Theorem rspcsbnea 41634
Description: Special case related to rspsbc 3874. (Contributed by metakunt, 5-May-2025.)
Assertion
Ref Expression
rspcsbnea ((𝐴𝐵 ∧ ∀𝑥𝐵 𝐶𝐷) → 𝐴 / 𝑥𝐶𝐷)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem rspcsbnea
StepHypRef Expression
1 rspsbc 3874 . . 3 (𝐴𝐵 → (∀𝑥𝐵 𝐶𝐷[𝐴 / 𝑥]𝐶𝐷))
2 df-ne 2938 . . . . . . 7 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
32sbcbii 3839 . . . . . 6 ([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥] ¬ 𝐶 = 𝐷)
43a1i 11 . . . . 5 (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥] ¬ 𝐶 = 𝐷))
5 sbcng 3829 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥] ¬ 𝐶 = 𝐷 ↔ ¬ [𝐴 / 𝑥]𝐶 = 𝐷))
6 sbceq1g 4418 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑥]𝐶 = 𝐷𝐴 / 𝑥𝐶 = 𝐷))
76notbid 317 . . . . . 6 (𝐴𝐵 → (¬ [𝐴 / 𝑥]𝐶 = 𝐷 ↔ ¬ 𝐴 / 𝑥𝐶 = 𝐷))
85, 7bitrd 278 . . . . 5 (𝐴𝐵 → ([𝐴 / 𝑥] ¬ 𝐶 = 𝐷 ↔ ¬ 𝐴 / 𝑥𝐶 = 𝐷))
94, 8bitrd 278 . . . 4 (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷 ↔ ¬ 𝐴 / 𝑥𝐶 = 𝐷))
10 biidd 261 . . . . 5 (𝐴𝐵 → (𝐴 / 𝑥𝐶 = 𝐷𝐴 / 𝑥𝐶 = 𝐷))
1110necon3bbid 2975 . . . 4 (𝐴𝐵 → (¬ 𝐴 / 𝑥𝐶 = 𝐷𝐴 / 𝑥𝐶𝐷))
129, 11bitrd 278 . . 3 (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐷))
131, 12sylibd 238 . 2 (𝐴𝐵 → (∀𝑥𝐵 𝐶𝐷𝐴 / 𝑥𝐶𝐷))
1413imp 405 1 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝐶𝐷) → 𝐴 / 𝑥𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2937  wral 3058  [wsbc 3778  csb 3894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-v 3475  df-sbc 3779  df-csb 3895
This theorem is referenced by:  idomnnzgmulnz  41636  deg1gprod  41644
  Copyright terms: Public domain W3C validator