| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rspcsbnea | Structured version Visualization version GIF version | ||
| Description: Special case related to rspsbc 3859. (Contributed by metakunt, 5-May-2025.) |
| Ref | Expression |
|---|---|
| rspcsbnea | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ≠ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspsbc 3859 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ≠ 𝐷 → [𝐴 / 𝑥]𝐶 ≠ 𝐷)) | |
| 2 | df-ne 2934 | . . . . . . 7 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 3 | 2 | sbcbii 3827 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝐶 ≠ 𝐷 ↔ [𝐴 / 𝑥] ¬ 𝐶 = 𝐷) |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ≠ 𝐷 ↔ [𝐴 / 𝑥] ¬ 𝐶 = 𝐷)) |
| 5 | sbcng 3818 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥] ¬ 𝐶 = 𝐷 ↔ ¬ [𝐴 / 𝑥]𝐶 = 𝐷)) | |
| 6 | sbceq1g 4397 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 = 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 = 𝐷)) | |
| 7 | 6 | notbid 318 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (¬ [𝐴 / 𝑥]𝐶 = 𝐷 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐶 = 𝐷)) |
| 8 | 5, 7 | bitrd 279 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥] ¬ 𝐶 = 𝐷 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐶 = 𝐷)) |
| 9 | 4, 8 | bitrd 279 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ≠ 𝐷 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐶 = 𝐷)) |
| 10 | biidd 262 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (⦋𝐴 / 𝑥⦌𝐶 = 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 = 𝐷)) | |
| 11 | 10 | necon3bbid 2970 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (¬ ⦋𝐴 / 𝑥⦌𝐶 = 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ≠ 𝐷)) |
| 12 | 9, 11 | bitrd 279 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ≠ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ≠ 𝐷)) |
| 13 | 1, 12 | sylibd 239 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ≠ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 ≠ 𝐷)) |
| 14 | 13 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ≠ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-v 3466 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: idomnnzgmulnz 42151 deg1gprod 42158 |
| Copyright terms: Public domain | W3C validator |