![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspcsbnea | Structured version Visualization version GIF version |
Description: Special case related to rspsbc 3874. (Contributed by metakunt, 5-May-2025.) |
Ref | Expression |
---|---|
rspcsbnea | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ≠ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspsbc 3874 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ≠ 𝐷 → [𝐴 / 𝑥]𝐶 ≠ 𝐷)) | |
2 | df-ne 2938 | . . . . . . 7 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
3 | 2 | sbcbii 3839 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝐶 ≠ 𝐷 ↔ [𝐴 / 𝑥] ¬ 𝐶 = 𝐷) |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ≠ 𝐷 ↔ [𝐴 / 𝑥] ¬ 𝐶 = 𝐷)) |
5 | sbcng 3829 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥] ¬ 𝐶 = 𝐷 ↔ ¬ [𝐴 / 𝑥]𝐶 = 𝐷)) | |
6 | sbceq1g 4418 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 = 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 = 𝐷)) | |
7 | 6 | notbid 317 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (¬ [𝐴 / 𝑥]𝐶 = 𝐷 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐶 = 𝐷)) |
8 | 5, 7 | bitrd 278 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥] ¬ 𝐶 = 𝐷 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐶 = 𝐷)) |
9 | 4, 8 | bitrd 278 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ≠ 𝐷 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐶 = 𝐷)) |
10 | biidd 261 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (⦋𝐴 / 𝑥⦌𝐶 = 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 = 𝐷)) | |
11 | 10 | necon3bbid 2975 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (¬ ⦋𝐴 / 𝑥⦌𝐶 = 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ≠ 𝐷)) |
12 | 9, 11 | bitrd 278 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ≠ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ≠ 𝐷)) |
13 | 1, 12 | sylibd 238 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ≠ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 ≠ 𝐷)) |
14 | 13 | imp 405 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ≠ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∀wral 3058 [wsbc 3778 ⦋csb 3894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-v 3475 df-sbc 3779 df-csb 3895 |
This theorem is referenced by: idomnnzgmulnz 41636 deg1gprod 41644 |
Copyright terms: Public domain | W3C validator |