Step | Hyp | Ref
| Expression |
1 | | mpteq1 5245 |
. . . 4
⊢ (𝑥 = ∅ → (𝑛 ∈ 𝑥 ↦ 𝐴) = (𝑛 ∈ ∅ ↦ 𝐴)) |
2 | 1 | oveq2d 7442 |
. . 3
⊢ (𝑥 = ∅ → (𝐺 Σg
(𝑛 ∈ 𝑥 ↦ 𝐴)) = (𝐺 Σg (𝑛 ∈ ∅ ↦ 𝐴))) |
3 | 2 | neeq1d 2997 |
. 2
⊢ (𝑥 = ∅ → ((𝐺 Σg
(𝑛 ∈ 𝑥 ↦ 𝐴)) ≠ (0g‘𝑅) ↔ (𝐺 Σg (𝑛 ∈ ∅ ↦ 𝐴)) ≠
(0g‘𝑅))) |
4 | | mpteq1 5245 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑛 ∈ 𝑥 ↦ 𝐴) = (𝑛 ∈ 𝑦 ↦ 𝐴)) |
5 | 4 | oveq2d 7442 |
. . 3
⊢ (𝑥 = 𝑦 → (𝐺 Σg (𝑛 ∈ 𝑥 ↦ 𝐴)) = (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴))) |
6 | 5 | neeq1d 2997 |
. 2
⊢ (𝑥 = 𝑦 → ((𝐺 Σg (𝑛 ∈ 𝑥 ↦ 𝐴)) ≠ (0g‘𝑅) ↔ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅))) |
7 | | mpteq1 5245 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑛 ∈ 𝑥 ↦ 𝐴) = (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴)) |
8 | 7 | oveq2d 7442 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐺 Σg (𝑛 ∈ 𝑥 ↦ 𝐴)) = (𝐺 Σg (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴))) |
9 | 8 | neeq1d 2997 |
. 2
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐺 Σg (𝑛 ∈ 𝑥 ↦ 𝐴)) ≠ (0g‘𝑅) ↔ (𝐺 Σg (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴)) ≠ (0g‘𝑅))) |
10 | | mpteq1 5245 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑛 ∈ 𝑥 ↦ 𝐴) = (𝑛 ∈ 𝑁 ↦ 𝐴)) |
11 | 10 | oveq2d 7442 |
. . 3
⊢ (𝑥 = 𝑁 → (𝐺 Σg (𝑛 ∈ 𝑥 ↦ 𝐴)) = (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴))) |
12 | 11 | neeq1d 2997 |
. 2
⊢ (𝑥 = 𝑁 → ((𝐺 Σg (𝑛 ∈ 𝑥 ↦ 𝐴)) ≠ (0g‘𝑅) ↔ (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) ≠ (0g‘𝑅))) |
13 | | mpt0 6702 |
. . . . . 6
⊢ (𝑛 ∈ ∅ ↦ 𝐴) = ∅ |
14 | 13 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ ∅ ↦ 𝐴) = ∅) |
15 | 14 | oveq2d 7442 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ ∅ ↦ 𝐴)) = (𝐺 Σg
∅)) |
16 | | eqid 2728 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
17 | 16 | gsum0 18651 |
. . . . 5
⊢ (𝐺 Σg
∅) = (0g‘𝐺) |
18 | 17 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐺 Σg ∅) =
(0g‘𝐺)) |
19 | 15, 18 | eqtrd 2768 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ ∅ ↦ 𝐴)) = (0g‘𝐺)) |
20 | | idomnnzgmulnz.1 |
. . . . . . 7
⊢ 𝐺 = (mulGrp‘𝑅) |
21 | | eqid 2728 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
22 | 20, 21 | ringidval 20130 |
. . . . . 6
⊢
(1r‘𝑅) = (0g‘𝐺) |
23 | 22 | eqcomi 2737 |
. . . . 5
⊢
(0g‘𝐺) = (1r‘𝑅) |
24 | 23 | a1i 11 |
. . . 4
⊢ (𝜑 → (0g‘𝐺) = (1r‘𝑅)) |
25 | | idomnnzgmulnz.2 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ IDomn) |
26 | | isidom 21261 |
. . . . . . 7
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
27 | 26 | simprbi 495 |
. . . . . 6
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Domn) |
28 | | domnnzr 21249 |
. . . . . 6
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
29 | 27, 28 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ NzRing) |
30 | | eqid 2728 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
31 | 21, 30 | nzrnz 20461 |
. . . . 5
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
≠ (0g‘𝑅)) |
32 | 25, 29, 31 | 3syl 18 |
. . . 4
⊢ (𝜑 → (1r‘𝑅) ≠
(0g‘𝑅)) |
33 | 24, 32 | eqnetrd 3005 |
. . 3
⊢ (𝜑 → (0g‘𝐺) ≠
(0g‘𝑅)) |
34 | 19, 33 | eqnetrd 3005 |
. 2
⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ ∅ ↦ 𝐴)) ≠
(0g‘𝑅)) |
35 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑚𝐴 |
36 | | nfcsb1v 3919 |
. . . . . . . 8
⊢
Ⅎ𝑛⦋𝑚 / 𝑛⦌𝐴 |
37 | | csbeq1a 3908 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑛⦌𝐴) |
38 | 35, 36, 37 | cbvmpt 5263 |
. . . . . . 7
⊢ (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴) = (𝑚 ∈ (𝑦 ∪ {𝑧}) ↦ ⦋𝑚 / 𝑛⦌𝐴) |
39 | 38 | oveq2i 7437 |
. . . . . 6
⊢ (𝐺 Σg
(𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴)) = (𝐺 Σg (𝑚 ∈ (𝑦 ∪ {𝑧}) ↦ ⦋𝑚 / 𝑛⦌𝐴)) |
40 | 39 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → (𝐺 Σg (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴)) = (𝐺 Σg (𝑚 ∈ (𝑦 ∪ {𝑧}) ↦ ⦋𝑚 / 𝑛⦌𝐴))) |
41 | | eqid 2728 |
. . . . . 6
⊢
(Base‘𝐺) =
(Base‘𝐺) |
42 | | eqid 2728 |
. . . . . 6
⊢
(+g‘𝐺) = (+g‘𝐺) |
43 | 26 | simplbi 496 |
. . . . . . . . . 10
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ CRing) |
44 | 25, 43 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ CRing) |
45 | 20 | crngmgp 20188 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
46 | 44, 45 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ CMnd) |
47 | 46 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) → 𝐺 ∈ CMnd) |
48 | 47 | adantr 479 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → 𝐺 ∈ CMnd) |
49 | | idomnnzgmulnz.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ Fin) |
50 | 49 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) → 𝑁 ∈ Fin) |
51 | | simprl 769 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) → 𝑦 ⊆ 𝑁) |
52 | 50, 51 | ssfid 9298 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) → 𝑦 ∈ Fin) |
53 | 52 | adantr 479 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → 𝑦 ∈ Fin) |
54 | 51 | ad2antrr 724 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) ∧ 𝑚 ∈ 𝑦) → 𝑦 ⊆ 𝑁) |
55 | | simpr 483 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) ∧ 𝑚 ∈ 𝑦) → 𝑚 ∈ 𝑦) |
56 | 54, 55 | sseldd 3983 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) ∧ 𝑚 ∈ 𝑦) → 𝑚 ∈ 𝑁) |
57 | | idomnnzgmulnz.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) |
58 | 57 | ralrimiva 3143 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ 𝑁 𝐴 ∈ (Base‘𝑅)) |
59 | 58 | ad3antrrr 728 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) ∧ 𝑚 ∈ 𝑦) → ∀𝑛 ∈ 𝑁 𝐴 ∈ (Base‘𝑅)) |
60 | | rspcsbela 4439 |
. . . . . . . 8
⊢ ((𝑚 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝐴 ∈ (Base‘𝑅)) → ⦋𝑚 / 𝑛⦌𝐴 ∈ (Base‘𝑅)) |
61 | 56, 59, 60 | syl2anc 582 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) ∧ 𝑚 ∈ 𝑦) → ⦋𝑚 / 𝑛⦌𝐴 ∈ (Base‘𝑅)) |
62 | | eqid 2728 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
63 | 20, 62 | mgpbas 20087 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝐺) |
64 | 63 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) ∧ 𝑚 ∈ 𝑦) → (Base‘𝑅) = (Base‘𝐺)) |
65 | 61, 64 | eleqtrd 2831 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) ∧ 𝑚 ∈ 𝑦) → ⦋𝑚 / 𝑛⦌𝐴 ∈ (Base‘𝐺)) |
66 | | eldifi 4127 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑁 ∖ 𝑦) → 𝑧 ∈ 𝑁) |
67 | 66 | adantl 480 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦)) → 𝑧 ∈ 𝑁) |
68 | 67 | adantl 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) → 𝑧 ∈ 𝑁) |
69 | 68 | adantr 479 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → 𝑧 ∈ 𝑁) |
70 | | eldifn 4128 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑁 ∖ 𝑦) → ¬ 𝑧 ∈ 𝑦) |
71 | 70 | adantl 480 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦)) → ¬ 𝑧 ∈ 𝑦) |
72 | 71 | adantl 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) → ¬ 𝑧 ∈ 𝑦) |
73 | 72 | adantr 479 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → ¬ 𝑧 ∈ 𝑦) |
74 | 58 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → ∀𝑛 ∈ 𝑁 𝐴 ∈ (Base‘𝑅)) |
75 | | rspcsbela 4439 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝐴 ∈ (Base‘𝑅)) → ⦋𝑧 / 𝑛⦌𝐴 ∈ (Base‘𝑅)) |
76 | 69, 74, 75 | syl2anc 582 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → ⦋𝑧 / 𝑛⦌𝐴 ∈ (Base‘𝑅)) |
77 | 63 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → (Base‘𝑅) = (Base‘𝐺)) |
78 | 76, 77 | eleqtrd 2831 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → ⦋𝑧 / 𝑛⦌𝐴 ∈ (Base‘𝐺)) |
79 | | csbeq1 3897 |
. . . . . 6
⊢ (𝑚 = 𝑧 → ⦋𝑚 / 𝑛⦌𝐴 = ⦋𝑧 / 𝑛⦌𝐴) |
80 | 41, 42, 48, 53, 65, 69, 73, 78, 79 | gsumunsn 19922 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → (𝐺 Σg (𝑚 ∈ (𝑦 ∪ {𝑧}) ↦ ⦋𝑚 / 𝑛⦌𝐴)) = ((𝐺 Σg (𝑚 ∈ 𝑦 ↦ ⦋𝑚 / 𝑛⦌𝐴))(+g‘𝐺)⦋𝑧 / 𝑛⦌𝐴)) |
81 | 40, 80 | eqtrd 2768 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → (𝐺 Σg (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴)) = ((𝐺 Σg (𝑚 ∈ 𝑦 ↦ ⦋𝑚 / 𝑛⦌𝐴))(+g‘𝐺)⦋𝑧 / 𝑛⦌𝐴)) |
82 | 25, 27 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Domn) |
83 | 82 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) → 𝑅 ∈ Domn) |
84 | 83 | adantr 479 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → 𝑅 ∈ Domn) |
85 | 61 | ralrimiva 3143 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → ∀𝑚 ∈ 𝑦 ⦋𝑚 / 𝑛⦌𝐴 ∈ (Base‘𝑅)) |
86 | 63, 48, 53, 85 | gsummptcl 19929 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → (𝐺 Σg (𝑚 ∈ 𝑦 ↦ ⦋𝑚 / 𝑛⦌𝐴)) ∈ (Base‘𝑅)) |
87 | 37 | equcoms 2015 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → 𝐴 = ⦋𝑚 / 𝑛⦌𝐴) |
88 | 87 | eqcomd 2734 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ⦋𝑚 / 𝑛⦌𝐴 = 𝐴) |
89 | 36, 35, 88 | cbvmpt 5263 |
. . . . . . . . 9
⊢ (𝑚 ∈ 𝑦 ↦ ⦋𝑚 / 𝑛⦌𝐴) = (𝑛 ∈ 𝑦 ↦ 𝐴) |
90 | 89 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → (𝑚 ∈ 𝑦 ↦ ⦋𝑚 / 𝑛⦌𝐴) = (𝑛 ∈ 𝑦 ↦ 𝐴)) |
91 | 90 | oveq2d 7442 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → (𝐺 Σg (𝑚 ∈ 𝑦 ↦ ⦋𝑚 / 𝑛⦌𝐴)) = (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴))) |
92 | | simpr 483 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) |
93 | 91, 92 | eqnetrd 3005 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → (𝐺 Σg (𝑚 ∈ 𝑦 ↦ ⦋𝑚 / 𝑛⦌𝐴)) ≠ (0g‘𝑅)) |
94 | 86, 93 | jca 510 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → ((𝐺 Σg (𝑚 ∈ 𝑦 ↦ ⦋𝑚 / 𝑛⦌𝐴)) ∈ (Base‘𝑅) ∧ (𝐺 Σg (𝑚 ∈ 𝑦 ↦ ⦋𝑚 / 𝑛⦌𝐴)) ≠ (0g‘𝑅))) |
95 | | idomnnzgmulnz.5 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ≠ (0g‘𝑅)) |
96 | 95 | ralrimiva 3143 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ 𝑁 𝐴 ≠ (0g‘𝑅)) |
97 | 96 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) → ∀𝑛 ∈ 𝑁 𝐴 ≠ (0g‘𝑅)) |
98 | | rspcsbnea 41634 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝐴 ≠ (0g‘𝑅)) → ⦋𝑧 / 𝑛⦌𝐴 ≠ (0g‘𝑅)) |
99 | 68, 97, 98 | syl2anc 582 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) → ⦋𝑧 / 𝑛⦌𝐴 ≠ (0g‘𝑅)) |
100 | 99 | adantr 479 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → ⦋𝑧 / 𝑛⦌𝐴 ≠ (0g‘𝑅)) |
101 | 76, 100 | jca 510 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → (⦋𝑧 / 𝑛⦌𝐴 ∈ (Base‘𝑅) ∧ ⦋𝑧 / 𝑛⦌𝐴 ≠ (0g‘𝑅))) |
102 | | eqid 2728 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
103 | 20, 102 | mgpplusg 20085 |
. . . . . . 7
⊢
(.r‘𝑅) = (+g‘𝐺) |
104 | 103 | eqcomi 2737 |
. . . . . 6
⊢
(+g‘𝐺) = (.r‘𝑅) |
105 | 62, 104, 30 | domnmuln0 21252 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧ ((𝐺 Σg
(𝑚 ∈ 𝑦 ↦ ⦋𝑚 / 𝑛⦌𝐴)) ∈ (Base‘𝑅) ∧ (𝐺 Σg (𝑚 ∈ 𝑦 ↦ ⦋𝑚 / 𝑛⦌𝐴)) ≠ (0g‘𝑅)) ∧ (⦋𝑧 / 𝑛⦌𝐴 ∈ (Base‘𝑅) ∧ ⦋𝑧 / 𝑛⦌𝐴 ≠ (0g‘𝑅))) → ((𝐺 Σg (𝑚 ∈ 𝑦 ↦ ⦋𝑚 / 𝑛⦌𝐴))(+g‘𝐺)⦋𝑧 / 𝑛⦌𝐴) ≠ (0g‘𝑅)) |
106 | 84, 94, 101, 105 | syl3anc 1368 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → ((𝐺 Σg (𝑚 ∈ 𝑦 ↦ ⦋𝑚 / 𝑛⦌𝐴))(+g‘𝐺)⦋𝑧 / 𝑛⦌𝐴) ≠ (0g‘𝑅)) |
107 | 81, 106 | eqnetrd 3005 |
. . 3
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) ∧ (𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅)) → (𝐺 Σg (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴)) ≠ (0g‘𝑅)) |
108 | 107 | ex 411 |
. 2
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ (𝑁 ∖ 𝑦))) → ((𝐺 Σg (𝑛 ∈ 𝑦 ↦ 𝐴)) ≠ (0g‘𝑅) → (𝐺 Σg (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴)) ≠ (0g‘𝑅))) |
109 | 3, 6, 9, 12, 34, 108, 49 | findcard2d 9197 |
1
⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) ≠ (0g‘𝑅)) |