Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomnnzgmulnz Structured version   Visualization version   GIF version

Theorem idomnnzgmulnz 41636
Description: A finite product of non-zero elements in an integral domain is non-zero. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
idomnnzgmulnz.1 𝐺 = (mulGrp‘𝑅)
idomnnzgmulnz.2 (𝜑𝑅 ∈ IDomn)
idomnnzgmulnz.3 (𝜑𝑁 ∈ Fin)
idomnnzgmulnz.4 ((𝜑𝑛𝑁) → 𝐴 ∈ (Base‘𝑅))
idomnnzgmulnz.5 ((𝜑𝑛𝑁) → 𝐴 ≠ (0g𝑅))
Assertion
Ref Expression
idomnnzgmulnz (𝜑 → (𝐺 Σg (𝑛𝑁𝐴)) ≠ (0g𝑅))
Distinct variable groups:   𝑛,𝑁   𝑅,𝑛   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐺(𝑛)

Proof of Theorem idomnnzgmulnz
Dummy variables 𝑚 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 5245 . . . 4 (𝑥 = ∅ → (𝑛𝑥𝐴) = (𝑛 ∈ ∅ ↦ 𝐴))
21oveq2d 7442 . . 3 (𝑥 = ∅ → (𝐺 Σg (𝑛𝑥𝐴)) = (𝐺 Σg (𝑛 ∈ ∅ ↦ 𝐴)))
32neeq1d 2997 . 2 (𝑥 = ∅ → ((𝐺 Σg (𝑛𝑥𝐴)) ≠ (0g𝑅) ↔ (𝐺 Σg (𝑛 ∈ ∅ ↦ 𝐴)) ≠ (0g𝑅)))
4 mpteq1 5245 . . . 4 (𝑥 = 𝑦 → (𝑛𝑥𝐴) = (𝑛𝑦𝐴))
54oveq2d 7442 . . 3 (𝑥 = 𝑦 → (𝐺 Σg (𝑛𝑥𝐴)) = (𝐺 Σg (𝑛𝑦𝐴)))
65neeq1d 2997 . 2 (𝑥 = 𝑦 → ((𝐺 Σg (𝑛𝑥𝐴)) ≠ (0g𝑅) ↔ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)))
7 mpteq1 5245 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑛𝑥𝐴) = (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴))
87oveq2d 7442 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐺 Σg (𝑛𝑥𝐴)) = (𝐺 Σg (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴)))
98neeq1d 2997 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐺 Σg (𝑛𝑥𝐴)) ≠ (0g𝑅) ↔ (𝐺 Σg (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴)) ≠ (0g𝑅)))
10 mpteq1 5245 . . . 4 (𝑥 = 𝑁 → (𝑛𝑥𝐴) = (𝑛𝑁𝐴))
1110oveq2d 7442 . . 3 (𝑥 = 𝑁 → (𝐺 Σg (𝑛𝑥𝐴)) = (𝐺 Σg (𝑛𝑁𝐴)))
1211neeq1d 2997 . 2 (𝑥 = 𝑁 → ((𝐺 Σg (𝑛𝑥𝐴)) ≠ (0g𝑅) ↔ (𝐺 Σg (𝑛𝑁𝐴)) ≠ (0g𝑅)))
13 mpt0 6702 . . . . . 6 (𝑛 ∈ ∅ ↦ 𝐴) = ∅
1413a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ∅ ↦ 𝐴) = ∅)
1514oveq2d 7442 . . . 4 (𝜑 → (𝐺 Σg (𝑛 ∈ ∅ ↦ 𝐴)) = (𝐺 Σg ∅))
16 eqid 2728 . . . . . 6 (0g𝐺) = (0g𝐺)
1716gsum0 18651 . . . . 5 (𝐺 Σg ∅) = (0g𝐺)
1817a1i 11 . . . 4 (𝜑 → (𝐺 Σg ∅) = (0g𝐺))
1915, 18eqtrd 2768 . . 3 (𝜑 → (𝐺 Σg (𝑛 ∈ ∅ ↦ 𝐴)) = (0g𝐺))
20 idomnnzgmulnz.1 . . . . . . 7 𝐺 = (mulGrp‘𝑅)
21 eqid 2728 . . . . . . 7 (1r𝑅) = (1r𝑅)
2220, 21ringidval 20130 . . . . . 6 (1r𝑅) = (0g𝐺)
2322eqcomi 2737 . . . . 5 (0g𝐺) = (1r𝑅)
2423a1i 11 . . . 4 (𝜑 → (0g𝐺) = (1r𝑅))
25 idomnnzgmulnz.2 . . . . 5 (𝜑𝑅 ∈ IDomn)
26 isidom 21261 . . . . . . 7 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
2726simprbi 495 . . . . . 6 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
28 domnnzr 21249 . . . . . 6 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
2927, 28syl 17 . . . . 5 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
30 eqid 2728 . . . . . 6 (0g𝑅) = (0g𝑅)
3121, 30nzrnz 20461 . . . . 5 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
3225, 29, 313syl 18 . . . 4 (𝜑 → (1r𝑅) ≠ (0g𝑅))
3324, 32eqnetrd 3005 . . 3 (𝜑 → (0g𝐺) ≠ (0g𝑅))
3419, 33eqnetrd 3005 . 2 (𝜑 → (𝐺 Σg (𝑛 ∈ ∅ ↦ 𝐴)) ≠ (0g𝑅))
35 nfcv 2899 . . . . . . . 8 𝑚𝐴
36 nfcsb1v 3919 . . . . . . . 8 𝑛𝑚 / 𝑛𝐴
37 csbeq1a 3908 . . . . . . . 8 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
3835, 36, 37cbvmpt 5263 . . . . . . 7 (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴) = (𝑚 ∈ (𝑦 ∪ {𝑧}) ↦ 𝑚 / 𝑛𝐴)
3938oveq2i 7437 . . . . . 6 (𝐺 Σg (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴)) = (𝐺 Σg (𝑚 ∈ (𝑦 ∪ {𝑧}) ↦ 𝑚 / 𝑛𝐴))
4039a1i 11 . . . . 5 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → (𝐺 Σg (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴)) = (𝐺 Σg (𝑚 ∈ (𝑦 ∪ {𝑧}) ↦ 𝑚 / 𝑛𝐴)))
41 eqid 2728 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
42 eqid 2728 . . . . . 6 (+g𝐺) = (+g𝐺)
4326simplbi 496 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
4425, 43syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
4520crngmgp 20188 . . . . . . . . 9 (𝑅 ∈ CRing → 𝐺 ∈ CMnd)
4644, 45syl 17 . . . . . . . 8 (𝜑𝐺 ∈ CMnd)
4746adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) → 𝐺 ∈ CMnd)
4847adantr 479 . . . . . 6 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → 𝐺 ∈ CMnd)
49 idomnnzgmulnz.3 . . . . . . . . 9 (𝜑𝑁 ∈ Fin)
5049adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) → 𝑁 ∈ Fin)
51 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) → 𝑦𝑁)
5250, 51ssfid 9298 . . . . . . 7 ((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) → 𝑦 ∈ Fin)
5352adantr 479 . . . . . 6 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → 𝑦 ∈ Fin)
5451ad2antrr 724 . . . . . . . . 9 ((((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) ∧ 𝑚𝑦) → 𝑦𝑁)
55 simpr 483 . . . . . . . . 9 ((((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) ∧ 𝑚𝑦) → 𝑚𝑦)
5654, 55sseldd 3983 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) ∧ 𝑚𝑦) → 𝑚𝑁)
57 idomnnzgmulnz.4 . . . . . . . . . 10 ((𝜑𝑛𝑁) → 𝐴 ∈ (Base‘𝑅))
5857ralrimiva 3143 . . . . . . . . 9 (𝜑 → ∀𝑛𝑁 𝐴 ∈ (Base‘𝑅))
5958ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) ∧ 𝑚𝑦) → ∀𝑛𝑁 𝐴 ∈ (Base‘𝑅))
60 rspcsbela 4439 . . . . . . . 8 ((𝑚𝑁 ∧ ∀𝑛𝑁 𝐴 ∈ (Base‘𝑅)) → 𝑚 / 𝑛𝐴 ∈ (Base‘𝑅))
6156, 59, 60syl2anc 582 . . . . . . 7 ((((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) ∧ 𝑚𝑦) → 𝑚 / 𝑛𝐴 ∈ (Base‘𝑅))
62 eqid 2728 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
6320, 62mgpbas 20087 . . . . . . . 8 (Base‘𝑅) = (Base‘𝐺)
6463a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) ∧ 𝑚𝑦) → (Base‘𝑅) = (Base‘𝐺))
6561, 64eleqtrd 2831 . . . . . 6 ((((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) ∧ 𝑚𝑦) → 𝑚 / 𝑛𝐴 ∈ (Base‘𝐺))
66 eldifi 4127 . . . . . . . . 9 (𝑧 ∈ (𝑁𝑦) → 𝑧𝑁)
6766adantl 480 . . . . . . . 8 ((𝑦𝑁𝑧 ∈ (𝑁𝑦)) → 𝑧𝑁)
6867adantl 480 . . . . . . 7 ((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) → 𝑧𝑁)
6968adantr 479 . . . . . 6 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → 𝑧𝑁)
70 eldifn 4128 . . . . . . . . 9 (𝑧 ∈ (𝑁𝑦) → ¬ 𝑧𝑦)
7170adantl 480 . . . . . . . 8 ((𝑦𝑁𝑧 ∈ (𝑁𝑦)) → ¬ 𝑧𝑦)
7271adantl 480 . . . . . . 7 ((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) → ¬ 𝑧𝑦)
7372adantr 479 . . . . . 6 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → ¬ 𝑧𝑦)
7458ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → ∀𝑛𝑁 𝐴 ∈ (Base‘𝑅))
75 rspcsbela 4439 . . . . . . . 8 ((𝑧𝑁 ∧ ∀𝑛𝑁 𝐴 ∈ (Base‘𝑅)) → 𝑧 / 𝑛𝐴 ∈ (Base‘𝑅))
7669, 74, 75syl2anc 582 . . . . . . 7 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → 𝑧 / 𝑛𝐴 ∈ (Base‘𝑅))
7763a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → (Base‘𝑅) = (Base‘𝐺))
7876, 77eleqtrd 2831 . . . . . 6 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → 𝑧 / 𝑛𝐴 ∈ (Base‘𝐺))
79 csbeq1 3897 . . . . . 6 (𝑚 = 𝑧𝑚 / 𝑛𝐴 = 𝑧 / 𝑛𝐴)
8041, 42, 48, 53, 65, 69, 73, 78, 79gsumunsn 19922 . . . . 5 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → (𝐺 Σg (𝑚 ∈ (𝑦 ∪ {𝑧}) ↦ 𝑚 / 𝑛𝐴)) = ((𝐺 Σg (𝑚𝑦𝑚 / 𝑛𝐴))(+g𝐺)𝑧 / 𝑛𝐴))
8140, 80eqtrd 2768 . . . 4 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → (𝐺 Σg (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴)) = ((𝐺 Σg (𝑚𝑦𝑚 / 𝑛𝐴))(+g𝐺)𝑧 / 𝑛𝐴))
8225, 27syl 17 . . . . . . 7 (𝜑𝑅 ∈ Domn)
8382adantr 479 . . . . . 6 ((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) → 𝑅 ∈ Domn)
8483adantr 479 . . . . 5 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → 𝑅 ∈ Domn)
8561ralrimiva 3143 . . . . . . 7 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → ∀𝑚𝑦 𝑚 / 𝑛𝐴 ∈ (Base‘𝑅))
8663, 48, 53, 85gsummptcl 19929 . . . . . 6 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → (𝐺 Σg (𝑚𝑦𝑚 / 𝑛𝐴)) ∈ (Base‘𝑅))
8737equcoms 2015 . . . . . . . . . . 11 (𝑚 = 𝑛𝐴 = 𝑚 / 𝑛𝐴)
8887eqcomd 2734 . . . . . . . . . 10 (𝑚 = 𝑛𝑚 / 𝑛𝐴 = 𝐴)
8936, 35, 88cbvmpt 5263 . . . . . . . . 9 (𝑚𝑦𝑚 / 𝑛𝐴) = (𝑛𝑦𝐴)
9089a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → (𝑚𝑦𝑚 / 𝑛𝐴) = (𝑛𝑦𝐴))
9190oveq2d 7442 . . . . . . 7 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → (𝐺 Σg (𝑚𝑦𝑚 / 𝑛𝐴)) = (𝐺 Σg (𝑛𝑦𝐴)))
92 simpr 483 . . . . . . 7 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅))
9391, 92eqnetrd 3005 . . . . . 6 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → (𝐺 Σg (𝑚𝑦𝑚 / 𝑛𝐴)) ≠ (0g𝑅))
9486, 93jca 510 . . . . 5 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → ((𝐺 Σg (𝑚𝑦𝑚 / 𝑛𝐴)) ∈ (Base‘𝑅) ∧ (𝐺 Σg (𝑚𝑦𝑚 / 𝑛𝐴)) ≠ (0g𝑅)))
95 idomnnzgmulnz.5 . . . . . . . . . 10 ((𝜑𝑛𝑁) → 𝐴 ≠ (0g𝑅))
9695ralrimiva 3143 . . . . . . . . 9 (𝜑 → ∀𝑛𝑁 𝐴 ≠ (0g𝑅))
9796adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) → ∀𝑛𝑁 𝐴 ≠ (0g𝑅))
98 rspcsbnea 41634 . . . . . . . 8 ((𝑧𝑁 ∧ ∀𝑛𝑁 𝐴 ≠ (0g𝑅)) → 𝑧 / 𝑛𝐴 ≠ (0g𝑅))
9968, 97, 98syl2anc 582 . . . . . . 7 ((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) → 𝑧 / 𝑛𝐴 ≠ (0g𝑅))
10099adantr 479 . . . . . 6 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → 𝑧 / 𝑛𝐴 ≠ (0g𝑅))
10176, 100jca 510 . . . . 5 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → (𝑧 / 𝑛𝐴 ∈ (Base‘𝑅) ∧ 𝑧 / 𝑛𝐴 ≠ (0g𝑅)))
102 eqid 2728 . . . . . . . 8 (.r𝑅) = (.r𝑅)
10320, 102mgpplusg 20085 . . . . . . 7 (.r𝑅) = (+g𝐺)
104103eqcomi 2737 . . . . . 6 (+g𝐺) = (.r𝑅)
10562, 104, 30domnmuln0 21252 . . . . 5 ((𝑅 ∈ Domn ∧ ((𝐺 Σg (𝑚𝑦𝑚 / 𝑛𝐴)) ∈ (Base‘𝑅) ∧ (𝐺 Σg (𝑚𝑦𝑚 / 𝑛𝐴)) ≠ (0g𝑅)) ∧ (𝑧 / 𝑛𝐴 ∈ (Base‘𝑅) ∧ 𝑧 / 𝑛𝐴 ≠ (0g𝑅))) → ((𝐺 Σg (𝑚𝑦𝑚 / 𝑛𝐴))(+g𝐺)𝑧 / 𝑛𝐴) ≠ (0g𝑅))
10684, 94, 101, 105syl3anc 1368 . . . 4 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → ((𝐺 Σg (𝑚𝑦𝑚 / 𝑛𝐴))(+g𝐺)𝑧 / 𝑛𝐴) ≠ (0g𝑅))
10781, 106eqnetrd 3005 . . 3 (((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) ∧ (𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅)) → (𝐺 Σg (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴)) ≠ (0g𝑅))
108107ex 411 . 2 ((𝜑 ∧ (𝑦𝑁𝑧 ∈ (𝑁𝑦))) → ((𝐺 Σg (𝑛𝑦𝐴)) ≠ (0g𝑅) → (𝐺 Σg (𝑛 ∈ (𝑦 ∪ {𝑧}) ↦ 𝐴)) ≠ (0g𝑅)))
1093, 6, 9, 12, 34, 108, 49findcard2d 9197 1 (𝜑 → (𝐺 Σg (𝑛𝑁𝐴)) ≠ (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2937  wral 3058  csb 3894  cdif 3946  cun 3947  wss 3949  c0 4326  {csn 4632  cmpt 5235  cfv 6553  (class class class)co 7426  Fincfn 8970  Basecbs 17187  +gcplusg 17240  .rcmulr 17241  0gc0g 17428   Σg cgsu 17429  CMndccmn 19742  mulGrpcmgp 20081  1rcur 20128  CRingccrg 20181  NzRingcnzr 20458  Domncdomn 21234  IDomncidom 21235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-seq 14007  df-hash 14330  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-0g 17430  df-gsum 17431  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-grp 18900  df-minusg 18901  df-mulg 19031  df-cntz 19275  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-ring 20182  df-cring 20183  df-nzr 20459  df-domn 21238  df-idom 21239
This theorem is referenced by:  aks6d1c5lem2  41641  deg1gprod  41644
  Copyright terms: Public domain W3C validator