MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceq1g Structured version   Visualization version   GIF version

Theorem sbceq1g 4367
Description: Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.)
Assertion
Ref Expression
sbceq1g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbceq1g
StepHypRef Expression
1 sbceqg 4362 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
2 csbconstg 3869 . . 3 (𝐴𝑉𝐴 / 𝑥𝐶 = 𝐶)
32eqeq2d 2742 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶))
41, 3bitrd 279 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  [wsbc 3741  csb 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-v 3438  df-sbc 3742  df-csb 3851
This theorem is referenced by:  telgsums  19906  suppss2f  32618  f1od2  32700  finxpreclem4  37434  rspcsbnea  42170  tfsconcatfv  43380  frege120  44022
  Copyright terms: Public domain W3C validator