MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceq1g Structured version   Visualization version   GIF version

Theorem sbceq1g 4416
Description: Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.)
Assertion
Ref Expression
sbceq1g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbceq1g
StepHypRef Expression
1 sbceqg 4411 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
2 csbconstg 3908 . . 3 (𝐴𝑉𝐴 / 𝑥𝐶 = 𝐶)
32eqeq2d 2736 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶))
41, 3bitrd 278 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  [wsbc 3773  csb 3889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-v 3463  df-sbc 3774  df-csb 3890
This theorem is referenced by:  telgsums  19977  suppss2f  32525  f1od2  32605  finxpreclem4  37024  rspcsbnea  41753  tfsconcatfv  42917  frege120  43560
  Copyright terms: Public domain W3C validator