![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceq1g | Structured version Visualization version GIF version |
Description: Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.) |
Ref | Expression |
---|---|
sbceq1g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceqg 4128 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
2 | csbconstg 3695 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐶) | |
3 | 2 | eqeq2d 2781 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
4 | 1, 3 | bitrd 268 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1631 ∈ wcel 2145 [wsbc 3587 ⦋csb 3682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-sbc 3588 df-csb 3683 |
This theorem is referenced by: telgsums 18598 suppss2f 29779 f1od2 29839 finxpreclem4 33568 frege120 38803 |
Copyright terms: Public domain | W3C validator |