MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceq1g Structured version   Visualization version   GIF version

Theorem sbceq1g 4440
Description: Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.)
Assertion
Ref Expression
sbceq1g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbceq1g
StepHypRef Expression
1 sbceqg 4435 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
2 csbconstg 3940 . . 3 (𝐴𝑉𝐴 / 𝑥𝐶 = 𝐶)
32eqeq2d 2751 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶))
41, 3bitrd 279 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  [wsbc 3804  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490  df-sbc 3805  df-csb 3922
This theorem is referenced by:  telgsums  20035  suppss2f  32657  f1od2  32735  finxpreclem4  37360  rspcsbnea  42088  tfsconcatfv  43303  frege120  43945
  Copyright terms: Public domain W3C validator