![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj581 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj580 34889. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Remove unnecessary distinct variable conditions. (Revised by Andrew Salmon, 9-Jul-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj581.3 | ⊢ (𝜒 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj581.4 | ⊢ (𝜑′ ↔ [𝑔 / 𝑓]𝜑) |
bnj581.5 | ⊢ (𝜓′ ↔ [𝑔 / 𝑓]𝜓) |
bnj581.6 | ⊢ (𝜒′ ↔ [𝑔 / 𝑓]𝜒) |
Ref | Expression |
---|---|
bnj581 | ⊢ (𝜒′ ↔ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj581.6 | . 2 ⊢ (𝜒′ ↔ [𝑔 / 𝑓]𝜒) | |
2 | bnj581.3 | . . 3 ⊢ (𝜒 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
3 | 2 | sbcbii 3865 | . 2 ⊢ ([𝑔 / 𝑓]𝜒 ↔ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
4 | sbc3an 3874 | . . 3 ⊢ ([𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ([𝑔 / 𝑓]𝑓 Fn 𝑛 ∧ [𝑔 / 𝑓]𝜑 ∧ [𝑔 / 𝑓]𝜓)) | |
5 | bnj62 34696 | . . . . 5 ⊢ ([𝑔 / 𝑓]𝑓 Fn 𝑛 ↔ 𝑔 Fn 𝑛) | |
6 | 5 | bicomi 224 | . . . 4 ⊢ (𝑔 Fn 𝑛 ↔ [𝑔 / 𝑓]𝑓 Fn 𝑛) |
7 | bnj581.4 | . . . 4 ⊢ (𝜑′ ↔ [𝑔 / 𝑓]𝜑) | |
8 | bnj581.5 | . . . 4 ⊢ (𝜓′ ↔ [𝑔 / 𝑓]𝜓) | |
9 | 6, 7, 8 | 3anbi123i 1155 | . . 3 ⊢ ((𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′) ↔ ([𝑔 / 𝑓]𝑓 Fn 𝑛 ∧ [𝑔 / 𝑓]𝜑 ∧ [𝑔 / 𝑓]𝜓)) |
10 | 4, 9 | bitr4i 278 | . 2 ⊢ ([𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) |
11 | 1, 3, 10 | 3bitri 297 | 1 ⊢ (𝜒′ ↔ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1087 [wsbc 3804 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-fun 6575 df-fn 6576 |
This theorem is referenced by: bnj580 34889 bnj849 34901 |
Copyright terms: Public domain | W3C validator |