Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgeqoa Structured version   Visualization version   GIF version

Theorem rdgeqoa 35841
Description: If a recursive function with an initial value 𝐴 at step 𝑁 is equal to itself with an initial value 𝐵 at step 𝑀, then every finite number of successor steps will also be equal. (Contributed by ML, 21-Oct-2020.)
Assertion
Ref Expression
rdgeqoa ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))))

Proof of Theorem rdgeqoa
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . 2 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → 𝑋 ∈ ω)
2 eleq1 2825 . . . . 5 (𝑥 = 𝑋 → (𝑥 ∈ ω ↔ 𝑋 ∈ ω))
323anbi3d 1442 . . . 4 (𝑥 = 𝑋 → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω)))
4 oveq2 7365 . . . . . . 7 (𝑥 = 𝑋 → (𝑁 +o 𝑥) = (𝑁 +o 𝑋))
54fveq2d 6846 . . . . . 6 (𝑥 = 𝑋 → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)))
6 oveq2 7365 . . . . . . 7 (𝑥 = 𝑋 → (𝑀 +o 𝑥) = (𝑀 +o 𝑋))
76fveq2d 6846 . . . . . 6 (𝑥 = 𝑋 → (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋)))
85, 7eqeq12d 2752 . . . . 5 (𝑥 = 𝑋 → ((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))))
98imbi2d 340 . . . 4 (𝑥 = 𝑋 → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋)))))
103, 9imbi12d 344 . . 3 (𝑥 = 𝑋 → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))))))
11 peano1 7825 . . . . 5 ∅ ∈ ω
12 oa0 8462 . . . . . . . . . . . 12 (𝑁 ∈ On → (𝑁 +o ∅) = 𝑁)
1312fveq2d 6846 . . . . . . . . . . 11 (𝑁 ∈ On → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐴)‘𝑁))
1413eqcomd 2742 . . . . . . . . . 10 (𝑁 ∈ On → (rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐴)‘(𝑁 +o ∅)))
15 oa0 8462 . . . . . . . . . . . 12 (𝑀 ∈ On → (𝑀 +o ∅) = 𝑀)
1615fveq2d 6846 . . . . . . . . . . 11 (𝑀 ∈ On → (rec(𝐹, 𝐵)‘(𝑀 +o ∅)) = (rec(𝐹, 𝐵)‘𝑀))
1716eqcomd 2742 . . . . . . . . . 10 (𝑀 ∈ On → (rec(𝐹, 𝐵)‘𝑀) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅)))
1814, 17eqeqan12d 2750 . . . . . . . . 9 ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))))
1918biimpd 228 . . . . . . . 8 ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))))
20 eleq1 2825 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥 ∈ ω ↔ ∅ ∈ ω))
21203anbi3d 1442 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω)))
2211biantru 530 . . . . . . . . . . . 12 (𝑀 ∈ On ↔ (𝑀 ∈ On ∧ ∅ ∈ ω))
2322anbi2i 623 . . . . . . . . . . 11 ((𝑁 ∈ On ∧ 𝑀 ∈ On) ↔ (𝑁 ∈ On ∧ (𝑀 ∈ On ∧ ∅ ∈ ω)))
24 3anass 1095 . . . . . . . . . . 11 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω) ↔ (𝑁 ∈ On ∧ (𝑀 ∈ On ∧ ∅ ∈ ω)))
2523, 24bitr4i 277 . . . . . . . . . 10 ((𝑁 ∈ On ∧ 𝑀 ∈ On) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω))
2621, 25bitr4di 288 . . . . . . . . 9 (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On)))
27 oveq2 7365 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑁 +o 𝑥) = (𝑁 +o ∅))
2827fveq2d 6846 . . . . . . . . . . 11 (𝑥 = ∅ → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o ∅)))
29 oveq2 7365 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑀 +o 𝑥) = (𝑀 +o ∅))
3029fveq2d 6846 . . . . . . . . . . 11 (𝑥 = ∅ → (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅)))
3128, 30eqeq12d 2752 . . . . . . . . . 10 (𝑥 = ∅ → ((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))))
3231imbi2d 340 . . . . . . . . 9 (𝑥 = ∅ → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅)))))
3326, 32imbi12d 344 . . . . . . . 8 (𝑥 = ∅ → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))))))
3419, 33mpbiri 257 . . . . . . 7 (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
3534ax-gen 1797 . . . . . 6 𝑥(𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
36 sbc6g 3769 . . . . . 6 (∅ ∈ ω → ([∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ∀𝑥(𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))))
3735, 36mpbiri 257 . . . . 5 (∅ ∈ ω → [∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
3811, 37ax-mp 5 . . . 4 [∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
39 peano2b 7819 . . . . 5 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
40393anbi3i 1159 . . . . . . . 8 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω))
4140imbi1i 349 . . . . . . 7 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
42 nnon 7808 . . . . . . . . . . . . 13 (𝑥 ∈ ω → 𝑥 ∈ On)
43 oacl 8481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ On ∧ 𝑥 ∈ On) → (𝑁 +o 𝑥) ∈ On)
44 oacl 8481 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ On ∧ 𝑥 ∈ On) → (𝑀 +o 𝑥) ∈ On)
4543, 44anim12i 613 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑀 ∈ On ∧ 𝑥 ∈ On)) → ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On))
46453impdir 1351 . . . . . . . . . . . . . . 15 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) → ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On))
47 rdgsuc 8370 . . . . . . . . . . . . . . . . . 18 ((𝑁 +o 𝑥) ∈ On → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥))))
48 fveq2 6842 . . . . . . . . . . . . . . . . . 18 ((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) → (𝐹‘(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥))) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
4947, 48sylan9eqr 2798 . . . . . . . . . . . . . . . . 17 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ (𝑁 +o 𝑥) ∈ On) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
5049adantrr 715 . . . . . . . . . . . . . . . 16 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
51 rdgsuc 8370 . . . . . . . . . . . . . . . . 17 ((𝑀 +o 𝑥) ∈ On → (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
5251ad2antll 727 . . . . . . . . . . . . . . . 16 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On)) → (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
5350, 52eqtr4d 2779 . . . . . . . . . . . . . . 15 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
5446, 53sylan2 593 . . . . . . . . . . . . . 14 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
5554ancoms 459 . . . . . . . . . . . . 13 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
5642, 55syl3anl3 1414 . . . . . . . . . . . 12 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
57 onasuc 8474 . . . . . . . . . . . . . . 15 ((𝑁 ∈ On ∧ 𝑥 ∈ ω) → (𝑁 +o suc 𝑥) = suc (𝑁 +o 𝑥))
5857fveq2d 6846 . . . . . . . . . . . . . 14 ((𝑁 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)))
59583adant2 1131 . . . . . . . . . . . . 13 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)))
6059adantr 481 . . . . . . . . . . . 12 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)))
61 onasuc 8474 . . . . . . . . . . . . . . 15 ((𝑀 ∈ On ∧ 𝑥 ∈ ω) → (𝑀 +o suc 𝑥) = suc (𝑀 +o 𝑥))
6261fveq2d 6846 . . . . . . . . . . . . . 14 ((𝑀 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
63623adant1 1130 . . . . . . . . . . . . 13 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
6463adantr 481 . . . . . . . . . . . 12 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
6556, 60, 643eqtr4d 2786 . . . . . . . . . . 11 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))
6665ex 413 . . . . . . . . . 10 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))
6766imim2d 57 . . . . . . . . 9 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
6840, 67sylbir 234 . . . . . . . 8 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
6968a2i 14 . . . . . . 7 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
7041, 69sylbi 216 . . . . . 6 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
71 sbcimg 3790 . . . . . . 7 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → [suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))))
72 sbc3an 3809 . . . . . . . . 9 ([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ ([suc 𝑥 / 𝑥]𝑁 ∈ On ∧ [suc 𝑥 / 𝑥]𝑀 ∈ On ∧ [suc 𝑥 / 𝑥]𝑥 ∈ ω))
73 sbcg 3818 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]𝑁 ∈ On ↔ 𝑁 ∈ On))
74 sbcg 3818 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]𝑀 ∈ On ↔ 𝑀 ∈ On))
75 sbcel1v 3810 . . . . . . . . . . 11 ([suc 𝑥 / 𝑥]𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
7675a1i 11 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]𝑥 ∈ ω ↔ suc 𝑥 ∈ ω))
7773, 74, 763anbi123d 1436 . . . . . . . . 9 (suc 𝑥 ∈ ω → (([suc 𝑥 / 𝑥]𝑁 ∈ On ∧ [suc 𝑥 / 𝑥]𝑀 ∈ On ∧ [suc 𝑥 / 𝑥]𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω)))
7872, 77bitrid 282 . . . . . . . 8 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω)))
79 sbcimg 3790 . . . . . . . . 9 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → [suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
80 sbcg 3818 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) ↔ (rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀)))
81 sbceqg 4369 . . . . . . . . . . 11 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
82 csbfv12 6890 . . . . . . . . . . . . 13 suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (suc 𝑥 / 𝑥rec(𝐹, 𝐴)‘suc 𝑥 / 𝑥(𝑁 +o 𝑥))
83 csbconstg 3874 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥rec(𝐹, 𝐴) = rec(𝐹, 𝐴))
84 csbov123 7399 . . . . . . . . . . . . . . 15 suc 𝑥 / 𝑥(𝑁 +o 𝑥) = (suc 𝑥 / 𝑥𝑁suc 𝑥 / 𝑥 +o suc 𝑥 / 𝑥𝑥)
85 csbconstg 3874 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥 +o = +o )
86 csbconstg 3874 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥𝑁 = 𝑁)
87 csbvarg 4391 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥𝑥 = suc 𝑥)
8885, 86, 87oveq123d 7378 . . . . . . . . . . . . . . 15 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥𝑁suc 𝑥 / 𝑥 +o suc 𝑥 / 𝑥𝑥) = (𝑁 +o suc 𝑥))
8984, 88eqtrid 2788 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(𝑁 +o 𝑥) = (𝑁 +o suc 𝑥))
9083, 89fveq12d 6849 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥rec(𝐹, 𝐴)‘suc 𝑥 / 𝑥(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)))
9182, 90eqtrid 2788 . . . . . . . . . . . 12 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)))
92 csbfv12 6890 . . . . . . . . . . . . 13 suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (suc 𝑥 / 𝑥rec(𝐹, 𝐵)‘suc 𝑥 / 𝑥(𝑀 +o 𝑥))
93 csbconstg 3874 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥rec(𝐹, 𝐵) = rec(𝐹, 𝐵))
94 csbov123 7399 . . . . . . . . . . . . . . 15 suc 𝑥 / 𝑥(𝑀 +o 𝑥) = (suc 𝑥 / 𝑥𝑀suc 𝑥 / 𝑥 +o suc 𝑥 / 𝑥𝑥)
95 csbconstg 3874 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥𝑀 = 𝑀)
9685, 95, 87oveq123d 7378 . . . . . . . . . . . . . . 15 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥𝑀suc 𝑥 / 𝑥 +o suc 𝑥 / 𝑥𝑥) = (𝑀 +o suc 𝑥))
9794, 96eqtrid 2788 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(𝑀 +o 𝑥) = (𝑀 +o suc 𝑥))
9893, 97fveq12d 6849 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥rec(𝐹, 𝐵)‘suc 𝑥 / 𝑥(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))
9992, 98eqtrid 2788 . . . . . . . . . . . 12 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))
10091, 99eqeq12d 2752 . . . . . . . . . . 11 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))
10181, 100bitrd 278 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))
10280, 101imbi12d 344 . . . . . . . . 9 (suc 𝑥 ∈ ω → (([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → [suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
10379, 102bitrd 278 . . . . . . . 8 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
10478, 103imbi12d 344 . . . . . . 7 (suc 𝑥 ∈ ω → (([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → [suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))))
10571, 104bitrd 278 . . . . . 6 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))))
10670, 105syl5ibr 245 . . . . 5 (suc 𝑥 ∈ ω → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → [suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))))
10739, 106sylbi 216 . . . 4 (𝑥 ∈ ω → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → [suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))))
10838, 107findes 7839 . . 3 (𝑥 ∈ ω → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
10910, 108vtoclga 3534 . 2 (𝑋 ∈ ω → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋)))))
1101, 109mpcom 38 1 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wal 1539   = wceq 1541  wcel 2106  [wsbc 3739  csb 3855  c0 4282  Oncon0 6317  suc csuc 6319  cfv 6496  (class class class)co 7357  ωcom 7802  reccrdg 8355   +o coa 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-oadd 8416
This theorem is referenced by:  finxpreclem4  35865
  Copyright terms: Public domain W3C validator