| Step | Hyp | Ref
| Expression |
| 1 | | simp3 1138 |
. 2
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → 𝑋 ∈
ω) |
| 2 | | eleq1 2823 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑥 ∈ ω ↔ 𝑋 ∈ ω)) |
| 3 | 2 | 3anbi3d 1444 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω))) |
| 4 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑁 +o 𝑥) = (𝑁 +o 𝑋)) |
| 5 | 4 | fveq2d 6885 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋))) |
| 6 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑀 +o 𝑥) = (𝑀 +o 𝑋)) |
| 7 | 6 | fveq2d 6885 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))) |
| 8 | 5, 7 | eqeq12d 2752 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋)))) |
| 9 | 8 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑋 → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))))) |
| 10 | 3, 9 | imbi12d 344 |
. . 3
⊢ (𝑥 = 𝑋 → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋)))))) |
| 11 | | peano1 7889 |
. . . . 5
⊢ ∅
∈ ω |
| 12 | | oa0 8533 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ On → (𝑁 +o ∅) = 𝑁) |
| 13 | 12 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ On → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐴)‘𝑁)) |
| 14 | 13 | eqcomd 2742 |
. . . . . . . . . 10
⊢ (𝑁 ∈ On → (rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐴)‘(𝑁 +o ∅))) |
| 15 | | oa0 8533 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ On → (𝑀 +o ∅) = 𝑀) |
| 16 | 15 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ On → (rec(𝐹, 𝐵)‘(𝑀 +o ∅)) = (rec(𝐹, 𝐵)‘𝑀)) |
| 17 | 16 | eqcomd 2742 |
. . . . . . . . . 10
⊢ (𝑀 ∈ On → (rec(𝐹, 𝐵)‘𝑀) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))) |
| 18 | 14, 17 | eqeqan12d 2750 |
. . . . . . . . 9
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅)))) |
| 19 | 18 | biimpd 229 |
. . . . . . . 8
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅)))) |
| 20 | | eleq1 2823 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝑥 ∈ ω ↔ ∅
∈ ω)) |
| 21 | 20 | 3anbi3d 1444 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈
ω))) |
| 22 | 11 | biantru 529 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ On ↔ (𝑀 ∈ On ∧ ∅ ∈
ω)) |
| 23 | 22 | anbi2i 623 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On) ↔ (𝑁 ∈ On ∧ (𝑀 ∈ On ∧ ∅ ∈
ω))) |
| 24 | | 3anass 1094 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈
ω) ↔ (𝑁 ∈
On ∧ (𝑀 ∈ On ∧
∅ ∈ ω))) |
| 25 | 23, 24 | bitr4i 278 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈
ω)) |
| 26 | 21, 25 | bitr4di 289 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On))) |
| 27 | | oveq2 7418 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (𝑁 +o 𝑥) = (𝑁 +o ∅)) |
| 28 | 27 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o ∅))) |
| 29 | | oveq2 7418 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (𝑀 +o 𝑥) = (𝑀 +o ∅)) |
| 30 | 29 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))) |
| 31 | 28, 30 | eqeq12d 2752 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → ((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅)))) |
| 32 | 31 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))))) |
| 33 | 26, 32 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) →
((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o
∅)))))) |
| 34 | 19, 33 | mpbiri 258 |
. . . . . . 7
⊢ (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) →
((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))) |
| 35 | 34 | ax-gen 1795 |
. . . . . 6
⊢
∀𝑥(𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) →
((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))) |
| 36 | | sbc6g 3800 |
. . . . . 6
⊢ (∅
∈ ω → ([∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ∀𝑥(𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))))) |
| 37 | 35, 36 | mpbiri 258 |
. . . . 5
⊢ (∅
∈ ω → [∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))) |
| 38 | 11, 37 | ax-mp 5 |
. . . 4
⊢
[∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) |
| 39 | | peano2b 7883 |
. . . . 5
⊢ (𝑥 ∈ ω ↔ suc 𝑥 ∈
ω) |
| 40 | 39 | 3anbi3i 1159 |
. . . . . . . 8
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈
ω)) |
| 41 | 40 | imbi1i 349 |
. . . . . . 7
⊢ (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) →
((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))) |
| 42 | | nnon 7872 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ω → 𝑥 ∈ On) |
| 43 | | oacl 8552 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ On ∧ 𝑥 ∈ On) → (𝑁 +o 𝑥) ∈ On) |
| 44 | | oacl 8552 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ On ∧ 𝑥 ∈ On) → (𝑀 +o 𝑥) ∈ On) |
| 45 | 43, 44 | anim12i 613 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑀 ∈ On ∧ 𝑥 ∈ On)) → ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On)) |
| 46 | 45 | 3impdir 1352 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) → ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On)) |
| 47 | | rdgsuc 8443 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 +o 𝑥) ∈ On → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)))) |
| 48 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . 18
⊢
((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) → (𝐹‘(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥))) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) |
| 49 | 47, 48 | sylan9eqr 2793 |
. . . . . . . . . . . . . . . . 17
⊢
(((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ (𝑁 +o 𝑥) ∈ On) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) |
| 50 | 49 | adantrr 717 |
. . . . . . . . . . . . . . . 16
⊢
(((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) |
| 51 | | rdgsuc 8443 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 +o 𝑥) ∈ On → (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) |
| 52 | 51 | ad2antll 729 |
. . . . . . . . . . . . . . . 16
⊢
(((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On)) → (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) |
| 53 | 50, 52 | eqtr4d 2774 |
. . . . . . . . . . . . . . 15
⊢
(((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥))) |
| 54 | 46, 53 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢
(((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥))) |
| 55 | 54 | ancoms 458 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥))) |
| 56 | 42, 55 | syl3anl3 1416 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧
(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥))) |
| 57 | | onasuc 8545 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ On ∧ 𝑥 ∈ ω) → (𝑁 +o suc 𝑥) = suc (𝑁 +o 𝑥)) |
| 58 | 57 | fveq2d 6885 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ On ∧ 𝑥 ∈ ω) →
(rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥))) |
| 59 | 58 | 3adant2 1131 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) →
(rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥))) |
| 60 | 59 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧
(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥))) |
| 61 | | onasuc 8545 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ On ∧ 𝑥 ∈ ω) → (𝑀 +o suc 𝑥) = suc (𝑀 +o 𝑥)) |
| 62 | 61 | fveq2d 6885 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ On ∧ 𝑥 ∈ ω) →
(rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥))) |
| 63 | 62 | 3adant1 1130 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) →
(rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥))) |
| 64 | 63 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧
(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥))) |
| 65 | 56, 60, 64 | 3eqtr4d 2781 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧
(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))) |
| 66 | 65 | ex 412 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) →
((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))) |
| 67 | 66 | imim2d 57 |
. . . . . . . . 9
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) →
(((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))) |
| 68 | 40, 67 | sylbir 235 |
. . . . . . . 8
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) →
(((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))) |
| 69 | 68 | a2i 14 |
. . . . . . 7
⊢ (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) →
((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))) |
| 70 | 41, 69 | sylbi 217 |
. . . . . 6
⊢ (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) →
((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))) |
| 71 | | sbcimg 3819 |
. . . . . . 7
⊢ (suc
𝑥 ∈ ω →
([suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → [suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))) |
| 72 | | sbc3an 3835 |
. . . . . . . . 9
⊢
([suc 𝑥 /
𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ ([suc 𝑥 / 𝑥]𝑁 ∈ On ∧ [suc 𝑥 / 𝑥]𝑀 ∈ On ∧ [suc 𝑥 / 𝑥]𝑥 ∈ ω)) |
| 73 | | sbcg 3843 |
. . . . . . . . . 10
⊢ (suc
𝑥 ∈ ω →
([suc 𝑥 / 𝑥]𝑁 ∈ On ↔ 𝑁 ∈ On)) |
| 74 | | sbcg 3843 |
. . . . . . . . . 10
⊢ (suc
𝑥 ∈ ω →
([suc 𝑥 / 𝑥]𝑀 ∈ On ↔ 𝑀 ∈ On)) |
| 75 | | sbcel1v 3836 |
. . . . . . . . . . 11
⊢
([suc 𝑥 /
𝑥]𝑥 ∈ ω ↔ suc 𝑥 ∈ ω) |
| 76 | 75 | a1i 11 |
. . . . . . . . . 10
⊢ (suc
𝑥 ∈ ω →
([suc 𝑥 / 𝑥]𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)) |
| 77 | 73, 74, 76 | 3anbi123d 1438 |
. . . . . . . . 9
⊢ (suc
𝑥 ∈ ω →
(([suc 𝑥 / 𝑥]𝑁 ∈ On ∧ [suc 𝑥 / 𝑥]𝑀 ∈ On ∧ [suc 𝑥 / 𝑥]𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω))) |
| 78 | 72, 77 | bitrid 283 |
. . . . . . . 8
⊢ (suc
𝑥 ∈ ω →
([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω))) |
| 79 | | sbcimg 3819 |
. . . . . . . . 9
⊢ (suc
𝑥 ∈ ω →
([suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → [suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))) |
| 80 | | sbcg 3843 |
. . . . . . . . . 10
⊢ (suc
𝑥 ∈ ω →
([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) ↔ (rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀))) |
| 81 | | sbceqg 4392 |
. . . . . . . . . . 11
⊢ (suc
𝑥 ∈ ω →
([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ ⦋suc 𝑥 / 𝑥⦌(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = ⦋suc 𝑥 / 𝑥⦌(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) |
| 82 | | csbfv12 6929 |
. . . . . . . . . . . . 13
⊢
⦋suc 𝑥
/ 𝑥⦌(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (⦋suc 𝑥 / 𝑥⦌rec(𝐹, 𝐴)‘⦋suc 𝑥 / 𝑥⦌(𝑁 +o 𝑥)) |
| 83 | | csbconstg 3898 |
. . . . . . . . . . . . . 14
⊢ (suc
𝑥 ∈ ω →
⦋suc 𝑥 /
𝑥⦌rec(𝐹, 𝐴) = rec(𝐹, 𝐴)) |
| 84 | | csbov123 7454 |
. . . . . . . . . . . . . . 15
⊢
⦋suc 𝑥
/ 𝑥⦌(𝑁 +o 𝑥) = (⦋suc 𝑥 / 𝑥⦌𝑁⦋suc 𝑥 / 𝑥⦌ +o
⦋suc 𝑥 /
𝑥⦌𝑥) |
| 85 | | csbconstg 3898 |
. . . . . . . . . . . . . . . 16
⊢ (suc
𝑥 ∈ ω →
⦋suc 𝑥 /
𝑥⦌
+o = +o ) |
| 86 | | csbconstg 3898 |
. . . . . . . . . . . . . . . 16
⊢ (suc
𝑥 ∈ ω →
⦋suc 𝑥 /
𝑥⦌𝑁 = 𝑁) |
| 87 | | csbvarg 4414 |
. . . . . . . . . . . . . . . 16
⊢ (suc
𝑥 ∈ ω →
⦋suc 𝑥 /
𝑥⦌𝑥 = suc 𝑥) |
| 88 | 85, 86, 87 | oveq123d 7431 |
. . . . . . . . . . . . . . 15
⊢ (suc
𝑥 ∈ ω →
(⦋suc 𝑥 /
𝑥⦌𝑁⦋suc 𝑥 / 𝑥⦌ +o
⦋suc 𝑥 /
𝑥⦌𝑥) = (𝑁 +o suc 𝑥)) |
| 89 | 84, 88 | eqtrid 2783 |
. . . . . . . . . . . . . 14
⊢ (suc
𝑥 ∈ ω →
⦋suc 𝑥 /
𝑥⦌(𝑁 +o 𝑥) = (𝑁 +o suc 𝑥)) |
| 90 | 83, 89 | fveq12d 6888 |
. . . . . . . . . . . . 13
⊢ (suc
𝑥 ∈ ω →
(⦋suc 𝑥 /
𝑥⦌rec(𝐹, 𝐴)‘⦋suc 𝑥 / 𝑥⦌(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥))) |
| 91 | 82, 90 | eqtrid 2783 |
. . . . . . . . . . . 12
⊢ (suc
𝑥 ∈ ω →
⦋suc 𝑥 /
𝑥⦌(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥))) |
| 92 | | csbfv12 6929 |
. . . . . . . . . . . . 13
⊢
⦋suc 𝑥
/ 𝑥⦌(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (⦋suc 𝑥 / 𝑥⦌rec(𝐹, 𝐵)‘⦋suc 𝑥 / 𝑥⦌(𝑀 +o 𝑥)) |
| 93 | | csbconstg 3898 |
. . . . . . . . . . . . . 14
⊢ (suc
𝑥 ∈ ω →
⦋suc 𝑥 /
𝑥⦌rec(𝐹, 𝐵) = rec(𝐹, 𝐵)) |
| 94 | | csbov123 7454 |
. . . . . . . . . . . . . . 15
⊢
⦋suc 𝑥
/ 𝑥⦌(𝑀 +o 𝑥) = (⦋suc 𝑥 / 𝑥⦌𝑀⦋suc 𝑥 / 𝑥⦌ +o
⦋suc 𝑥 /
𝑥⦌𝑥) |
| 95 | | csbconstg 3898 |
. . . . . . . . . . . . . . . 16
⊢ (suc
𝑥 ∈ ω →
⦋suc 𝑥 /
𝑥⦌𝑀 = 𝑀) |
| 96 | 85, 95, 87 | oveq123d 7431 |
. . . . . . . . . . . . . . 15
⊢ (suc
𝑥 ∈ ω →
(⦋suc 𝑥 /
𝑥⦌𝑀⦋suc 𝑥 / 𝑥⦌ +o
⦋suc 𝑥 /
𝑥⦌𝑥) = (𝑀 +o suc 𝑥)) |
| 97 | 94, 96 | eqtrid 2783 |
. . . . . . . . . . . . . 14
⊢ (suc
𝑥 ∈ ω →
⦋suc 𝑥 /
𝑥⦌(𝑀 +o 𝑥) = (𝑀 +o suc 𝑥)) |
| 98 | 93, 97 | fveq12d 6888 |
. . . . . . . . . . . . 13
⊢ (suc
𝑥 ∈ ω →
(⦋suc 𝑥 /
𝑥⦌rec(𝐹, 𝐵)‘⦋suc 𝑥 / 𝑥⦌(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))) |
| 99 | 92, 98 | eqtrid 2783 |
. . . . . . . . . . . 12
⊢ (suc
𝑥 ∈ ω →
⦋suc 𝑥 /
𝑥⦌(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))) |
| 100 | 91, 99 | eqeq12d 2752 |
. . . . . . . . . . 11
⊢ (suc
𝑥 ∈ ω →
(⦋suc 𝑥 /
𝑥⦌(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = ⦋suc 𝑥 / 𝑥⦌(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))) |
| 101 | 81, 100 | bitrd 279 |
. . . . . . . . . 10
⊢ (suc
𝑥 ∈ ω →
([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))) |
| 102 | 80, 101 | imbi12d 344 |
. . . . . . . . 9
⊢ (suc
𝑥 ∈ ω →
(([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → [suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))) |
| 103 | 79, 102 | bitrd 279 |
. . . . . . . 8
⊢ (suc
𝑥 ∈ ω →
([suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))) |
| 104 | 78, 103 | imbi12d 344 |
. . . . . . 7
⊢ (suc
𝑥 ∈ ω →
(([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → [suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))) |
| 105 | 71, 104 | bitrd 279 |
. . . . . 6
⊢ (suc
𝑥 ∈ ω →
([suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))) |
| 106 | 70, 105 | imbitrrid 246 |
. . . . 5
⊢ (suc
𝑥 ∈ ω →
(((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) →
((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → [suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))) |
| 107 | 39, 106 | sylbi 217 |
. . . 4
⊢ (𝑥 ∈ ω → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) →
((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → [suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))) |
| 108 | 38, 107 | findes 7901 |
. . 3
⊢ (𝑥 ∈ ω → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) →
((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))) |
| 109 | 10, 108 | vtoclga 3561 |
. 2
⊢ (𝑋 ∈ ω → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) →
((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))))) |
| 110 | 1, 109 | mpcom 38 |
1
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) →
((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋)))) |