Mathbox for ML < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgeqoa Structured version   Visualization version   GIF version

Theorem rdgeqoa 34806
 Description: If a recursive function with an initial value 𝐴 at step 𝑁 is equal to itself with an initial value 𝐵 at step 𝑀, then every finite number of successor steps will also be equal. (Contributed by ML, 21-Oct-2020.)
Assertion
Ref Expression
rdgeqoa ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))))

Proof of Theorem rdgeqoa
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1135 . 2 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → 𝑋 ∈ ω)
2 eleq1 2877 . . . . 5 (𝑥 = 𝑋 → (𝑥 ∈ ω ↔ 𝑋 ∈ ω))
323anbi3d 1439 . . . 4 (𝑥 = 𝑋 → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω)))
4 oveq2 7144 . . . . . . 7 (𝑥 = 𝑋 → (𝑁 +o 𝑥) = (𝑁 +o 𝑋))
54fveq2d 6650 . . . . . 6 (𝑥 = 𝑋 → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)))
6 oveq2 7144 . . . . . . 7 (𝑥 = 𝑋 → (𝑀 +o 𝑥) = (𝑀 +o 𝑋))
76fveq2d 6650 . . . . . 6 (𝑥 = 𝑋 → (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋)))
85, 7eqeq12d 2814 . . . . 5 (𝑥 = 𝑋 → ((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))))
98imbi2d 344 . . . 4 (𝑥 = 𝑋 → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋)))))
103, 9imbi12d 348 . . 3 (𝑥 = 𝑋 → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))))))
11 peano1 7584 . . . . 5 ∅ ∈ ω
12 oa0 8127 . . . . . . . . . . . 12 (𝑁 ∈ On → (𝑁 +o ∅) = 𝑁)
1312fveq2d 6650 . . . . . . . . . . 11 (𝑁 ∈ On → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐴)‘𝑁))
1413eqcomd 2804 . . . . . . . . . 10 (𝑁 ∈ On → (rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐴)‘(𝑁 +o ∅)))
15 oa0 8127 . . . . . . . . . . . 12 (𝑀 ∈ On → (𝑀 +o ∅) = 𝑀)
1615fveq2d 6650 . . . . . . . . . . 11 (𝑀 ∈ On → (rec(𝐹, 𝐵)‘(𝑀 +o ∅)) = (rec(𝐹, 𝐵)‘𝑀))
1716eqcomd 2804 . . . . . . . . . 10 (𝑀 ∈ On → (rec(𝐹, 𝐵)‘𝑀) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅)))
1814, 17eqeqan12d 2815 . . . . . . . . 9 ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))))
1918biimpd 232 . . . . . . . 8 ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))))
20 eleq1 2877 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥 ∈ ω ↔ ∅ ∈ ω))
21203anbi3d 1439 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω)))
2211biantru 533 . . . . . . . . . . . 12 (𝑀 ∈ On ↔ (𝑀 ∈ On ∧ ∅ ∈ ω))
2322anbi2i 625 . . . . . . . . . . 11 ((𝑁 ∈ On ∧ 𝑀 ∈ On) ↔ (𝑁 ∈ On ∧ (𝑀 ∈ On ∧ ∅ ∈ ω)))
24 3anass 1092 . . . . . . . . . . 11 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω) ↔ (𝑁 ∈ On ∧ (𝑀 ∈ On ∧ ∅ ∈ ω)))
2523, 24bitr4i 281 . . . . . . . . . 10 ((𝑁 ∈ On ∧ 𝑀 ∈ On) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω))
2621, 25bitr4di 292 . . . . . . . . 9 (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On)))
27 oveq2 7144 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑁 +o 𝑥) = (𝑁 +o ∅))
2827fveq2d 6650 . . . . . . . . . . 11 (𝑥 = ∅ → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o ∅)))
29 oveq2 7144 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑀 +o 𝑥) = (𝑀 +o ∅))
3029fveq2d 6650 . . . . . . . . . . 11 (𝑥 = ∅ → (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅)))
3128, 30eqeq12d 2814 . . . . . . . . . 10 (𝑥 = ∅ → ((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))))
3231imbi2d 344 . . . . . . . . 9 (𝑥 = ∅ → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅)))))
3326, 32imbi12d 348 . . . . . . . 8 (𝑥 = ∅ → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))))))
3419, 33mpbiri 261 . . . . . . 7 (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
3534ax-gen 1797 . . . . . 6 𝑥(𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
36 sbc6g 3749 . . . . . 6 (∅ ∈ ω → ([∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ∀𝑥(𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))))
3735, 36mpbiri 261 . . . . 5 (∅ ∈ ω → [∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
3811, 37ax-mp 5 . . . 4 [∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
39 peano2b 7579 . . . . 5 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
40393anbi3i 1156 . . . . . . . 8 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω))
4140imbi1i 353 . . . . . . 7 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
42 nnon 7569 . . . . . . . . . . . . 13 (𝑥 ∈ ω → 𝑥 ∈ On)
43 oacl 8146 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ On ∧ 𝑥 ∈ On) → (𝑁 +o 𝑥) ∈ On)
44 oacl 8146 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ On ∧ 𝑥 ∈ On) → (𝑀 +o 𝑥) ∈ On)
4543, 44anim12i 615 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑀 ∈ On ∧ 𝑥 ∈ On)) → ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On))
46453impdir 1348 . . . . . . . . . . . . . . 15 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) → ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On))
47 rdgsuc 8046 . . . . . . . . . . . . . . . . . 18 ((𝑁 +o 𝑥) ∈ On → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥))))
48 fveq2 6646 . . . . . . . . . . . . . . . . . 18 ((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) → (𝐹‘(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥))) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
4947, 48sylan9eqr 2855 . . . . . . . . . . . . . . . . 17 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ (𝑁 +o 𝑥) ∈ On) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
5049adantrr 716 . . . . . . . . . . . . . . . 16 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
51 rdgsuc 8046 . . . . . . . . . . . . . . . . 17 ((𝑀 +o 𝑥) ∈ On → (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
5251ad2antll 728 . . . . . . . . . . . . . . . 16 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On)) → (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
5350, 52eqtr4d 2836 . . . . . . . . . . . . . . 15 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
5446, 53sylan2 595 . . . . . . . . . . . . . 14 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
5554ancoms 462 . . . . . . . . . . . . 13 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
5642, 55syl3anl3 1411 . . . . . . . . . . . 12 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
57 onasuc 8139 . . . . . . . . . . . . . . 15 ((𝑁 ∈ On ∧ 𝑥 ∈ ω) → (𝑁 +o suc 𝑥) = suc (𝑁 +o 𝑥))
5857fveq2d 6650 . . . . . . . . . . . . . 14 ((𝑁 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)))
59583adant2 1128 . . . . . . . . . . . . 13 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)))
6059adantr 484 . . . . . . . . . . . 12 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)))
61 onasuc 8139 . . . . . . . . . . . . . . 15 ((𝑀 ∈ On ∧ 𝑥 ∈ ω) → (𝑀 +o suc 𝑥) = suc (𝑀 +o 𝑥))
6261fveq2d 6650 . . . . . . . . . . . . . 14 ((𝑀 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
63623adant1 1127 . . . . . . . . . . . . 13 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
6463adantr 484 . . . . . . . . . . . 12 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
6556, 60, 643eqtr4d 2843 . . . . . . . . . . 11 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))
6665ex 416 . . . . . . . . . 10 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))
6766imim2d 57 . . . . . . . . 9 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
6840, 67sylbir 238 . . . . . . . 8 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
6968a2i 14 . . . . . . 7 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
7041, 69sylbi 220 . . . . . 6 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
71 sbcimg 3767 . . . . . . 7 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → [suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))))
72 sbc3an 3785 . . . . . . . . 9 ([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ ([suc 𝑥 / 𝑥]𝑁 ∈ On ∧ [suc 𝑥 / 𝑥]𝑀 ∈ On ∧ [suc 𝑥 / 𝑥]𝑥 ∈ ω))
73 sbcg 3793 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]𝑁 ∈ On ↔ 𝑁 ∈ On))
74 sbcg 3793 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]𝑀 ∈ On ↔ 𝑀 ∈ On))
75 sbcel1v 3786 . . . . . . . . . . 11 ([suc 𝑥 / 𝑥]𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
7675a1i 11 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]𝑥 ∈ ω ↔ suc 𝑥 ∈ ω))
7773, 74, 763anbi123d 1433 . . . . . . . . 9 (suc 𝑥 ∈ ω → (([suc 𝑥 / 𝑥]𝑁 ∈ On ∧ [suc 𝑥 / 𝑥]𝑀 ∈ On ∧ [suc 𝑥 / 𝑥]𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω)))
7872, 77syl5bb 286 . . . . . . . 8 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω)))
79 sbcimg 3767 . . . . . . . . 9 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → [suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
80 sbcg 3793 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) ↔ (rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀)))
81 sbceqg 4317 . . . . . . . . . . 11 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
82 csbfv12 6689 . . . . . . . . . . . . 13 suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (suc 𝑥 / 𝑥rec(𝐹, 𝐴)‘suc 𝑥 / 𝑥(𝑁 +o 𝑥))
83 csbconstg 3847 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥rec(𝐹, 𝐴) = rec(𝐹, 𝐴))
84 csbov123 7178 . . . . . . . . . . . . . . 15 suc 𝑥 / 𝑥(𝑁 +o 𝑥) = (suc 𝑥 / 𝑥𝑁suc 𝑥 / 𝑥 +o suc 𝑥 / 𝑥𝑥)
85 csbconstg 3847 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥 +o = +o )
86 csbconstg 3847 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥𝑁 = 𝑁)
87 csbvarg 4339 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥𝑥 = suc 𝑥)
8885, 86, 87oveq123d 7157 . . . . . . . . . . . . . . 15 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥𝑁suc 𝑥 / 𝑥 +o suc 𝑥 / 𝑥𝑥) = (𝑁 +o suc 𝑥))
8984, 88syl5eq 2845 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(𝑁 +o 𝑥) = (𝑁 +o suc 𝑥))
9083, 89fveq12d 6653 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥rec(𝐹, 𝐴)‘suc 𝑥 / 𝑥(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)))
9182, 90syl5eq 2845 . . . . . . . . . . . 12 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)))
92 csbfv12 6689 . . . . . . . . . . . . 13 suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (suc 𝑥 / 𝑥rec(𝐹, 𝐵)‘suc 𝑥 / 𝑥(𝑀 +o 𝑥))
93 csbconstg 3847 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥rec(𝐹, 𝐵) = rec(𝐹, 𝐵))
94 csbov123 7178 . . . . . . . . . . . . . . 15 suc 𝑥 / 𝑥(𝑀 +o 𝑥) = (suc 𝑥 / 𝑥𝑀suc 𝑥 / 𝑥 +o suc 𝑥 / 𝑥𝑥)
95 csbconstg 3847 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥𝑀 = 𝑀)
9685, 95, 87oveq123d 7157 . . . . . . . . . . . . . . 15 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥𝑀suc 𝑥 / 𝑥 +o suc 𝑥 / 𝑥𝑥) = (𝑀 +o suc 𝑥))
9794, 96syl5eq 2845 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(𝑀 +o 𝑥) = (𝑀 +o suc 𝑥))
9893, 97fveq12d 6653 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥rec(𝐹, 𝐵)‘suc 𝑥 / 𝑥(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))
9992, 98syl5eq 2845 . . . . . . . . . . . 12 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))
10091, 99eqeq12d 2814 . . . . . . . . . . 11 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))
10181, 100bitrd 282 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))
10280, 101imbi12d 348 . . . . . . . . 9 (suc 𝑥 ∈ ω → (([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → [suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
10379, 102bitrd 282 . . . . . . . 8 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
10478, 103imbi12d 348 . . . . . . 7 (suc 𝑥 ∈ ω → (([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → [suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))))
10571, 104bitrd 282 . . . . . 6 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))))
10670, 105syl5ibr 249 . . . . 5 (suc 𝑥 ∈ ω → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → [suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))))
10739, 106sylbi 220 . . . 4 (𝑥 ∈ ω → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → [suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))))
10838, 107findes 7596 . . 3 (𝑥 ∈ ω → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
10910, 108vtoclga 3522 . 2 (𝑋 ∈ ω → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋)))))
1101, 109mpcom 38 1 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084  ∀wal 1536   = wceq 1538   ∈ wcel 2111  [wsbc 3720  ⦋csb 3828  ∅c0 4243  Oncon0 6160  suc csuc 6162  ‘cfv 6325  (class class class)co 7136  ωcom 7563  reccrdg 8031   +o coa 8085 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-oadd 8092 This theorem is referenced by:  finxpreclem4  34830
 Copyright terms: Public domain W3C validator