Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkid3N Structured version   Visualization version   GIF version

Theorem cdlemkid3N 38073
Description: Lemma for cdlemkid 38076. (Contributed by NM, 25-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemkid3N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → 𝐺 / 𝑔𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑃)))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemkid3N
StepHypRef Expression
1 simp3r 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → 𝐺 = ( I ↾ 𝐵))
2 cdlemk5.b . . . . . 6 𝐵 = (Base‘𝐾)
3 cdlemk5.h . . . . . 6 𝐻 = (LHyp‘𝐾)
4 cdlemk5.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4idltrn 37290 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
653ad2ant1 1129 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ( I ↾ 𝐵) ∈ 𝑇)
71, 6eqeltrd 2916 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → 𝐺𝑇)
8 cdlemk5.x . . . . . 6 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
98csbeq2i 3894 . . . . 5 𝐺 / 𝑔𝑋 = 𝐺 / 𝑔(𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
10 csbriota 7132 . . . . . 6 𝐺 / 𝑔(𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌)) = (𝑧𝑇 [𝐺 / 𝑔]𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
1110a1i 11 . . . . 5 (𝐺𝑇𝐺 / 𝑔(𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌)) = (𝑧𝑇 [𝐺 / 𝑔]𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌)))
129, 11syl5eq 2871 . . . 4 (𝐺𝑇𝐺 / 𝑔𝑋 = (𝑧𝑇 [𝐺 / 𝑔]𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌)))
13 sbcralg 3860 . . . . . 6 (𝐺𝑇 → ([𝐺 / 𝑔]𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌) ↔ ∀𝑏𝑇 [𝐺 / 𝑔]((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌)))
14 sbcimg 3823 . . . . . . . 8 (𝐺𝑇 → ([𝐺 / 𝑔]((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌) ↔ ([𝐺 / 𝑔](𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → [𝐺 / 𝑔](𝑧𝑃) = 𝑌)))
15 sbc3an 3841 . . . . . . . . . 10 ([𝐺 / 𝑔](𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) ↔ ([𝐺 / 𝑔]𝑏 ≠ ( I ↾ 𝐵) ∧ [𝐺 / 𝑔](𝑅𝑏) ≠ (𝑅𝐹) ∧ [𝐺 / 𝑔](𝑅𝑏) ≠ (𝑅𝑔)))
16 sbcg 3850 . . . . . . . . . . 11 (𝐺𝑇 → ([𝐺 / 𝑔]𝑏 ≠ ( I ↾ 𝐵) ↔ 𝑏 ≠ ( I ↾ 𝐵)))
17 sbcg 3850 . . . . . . . . . . 11 (𝐺𝑇 → ([𝐺 / 𝑔](𝑅𝑏) ≠ (𝑅𝐹) ↔ (𝑅𝑏) ≠ (𝑅𝐹)))
18 sbcne12 4367 . . . . . . . . . . . 12 ([𝐺 / 𝑔](𝑅𝑏) ≠ (𝑅𝑔) ↔ 𝐺 / 𝑔(𝑅𝑏) ≠ 𝐺 / 𝑔(𝑅𝑔))
19 csbconstg 3905 . . . . . . . . . . . . 13 (𝐺𝑇𝐺 / 𝑔(𝑅𝑏) = (𝑅𝑏))
20 csbfv 6718 . . . . . . . . . . . . . 14 𝐺 / 𝑔(𝑅𝑔) = (𝑅𝐺)
2120a1i 11 . . . . . . . . . . . . 13 (𝐺𝑇𝐺 / 𝑔(𝑅𝑔) = (𝑅𝐺))
2219, 21neeq12d 3080 . . . . . . . . . . . 12 (𝐺𝑇 → (𝐺 / 𝑔(𝑅𝑏) ≠ 𝐺 / 𝑔(𝑅𝑔) ↔ (𝑅𝑏) ≠ (𝑅𝐺)))
2318, 22syl5bb 285 . . . . . . . . . . 11 (𝐺𝑇 → ([𝐺 / 𝑔](𝑅𝑏) ≠ (𝑅𝑔) ↔ (𝑅𝑏) ≠ (𝑅𝐺)))
2416, 17, 233anbi123d 1432 . . . . . . . . . 10 (𝐺𝑇 → (([𝐺 / 𝑔]𝑏 ≠ ( I ↾ 𝐵) ∧ [𝐺 / 𝑔](𝑅𝑏) ≠ (𝑅𝐹) ∧ [𝐺 / 𝑔](𝑅𝑏) ≠ (𝑅𝑔)) ↔ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))))
2515, 24syl5bb 285 . . . . . . . . 9 (𝐺𝑇 → ([𝐺 / 𝑔](𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) ↔ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))))
26 sbceq2g 4371 . . . . . . . . 9 (𝐺𝑇 → ([𝐺 / 𝑔](𝑧𝑃) = 𝑌 ↔ (𝑧𝑃) = 𝐺 / 𝑔𝑌))
2725, 26imbi12d 347 . . . . . . . 8 (𝐺𝑇 → (([𝐺 / 𝑔](𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → [𝐺 / 𝑔](𝑧𝑃) = 𝑌) ↔ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝐺 / 𝑔𝑌)))
2814, 27bitrd 281 . . . . . . 7 (𝐺𝑇 → ([𝐺 / 𝑔]((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌) ↔ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝐺 / 𝑔𝑌)))
2928ralbidv 3200 . . . . . 6 (𝐺𝑇 → (∀𝑏𝑇 [𝐺 / 𝑔]((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌) ↔ ∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝐺 / 𝑔𝑌)))
3013, 29bitrd 281 . . . . 5 (𝐺𝑇 → ([𝐺 / 𝑔]𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌) ↔ ∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝐺 / 𝑔𝑌)))
3130riotabidv 7119 . . . 4 (𝐺𝑇 → (𝑧𝑇 [𝐺 / 𝑔]𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌)) = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝐺 / 𝑔𝑌)))
3212, 31eqtrd 2859 . . 3 (𝐺𝑇𝐺 / 𝑔𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝐺 / 𝑔𝑌)))
337, 32syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → 𝐺 / 𝑔𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝐺 / 𝑔𝑌)))
34 simp11 1199 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
35 simp12 1200 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))) → (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)))
36 simp13l 1284 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
37 simp13r 1285 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))) → 𝐺 = ( I ↾ 𝐵))
38 simp2 1133 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))) → 𝑏𝑇)
39 simp31 1205 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))) → 𝑏 ≠ ( I ↾ 𝐵))
4038, 39jca 514 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))) → (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))
41 cdlemk5.l . . . . . . . . 9 = (le‘𝐾)
42 cdlemk5.j . . . . . . . . 9 = (join‘𝐾)
43 cdlemk5.m . . . . . . . . 9 = (meet‘𝐾)
44 cdlemk5.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
45 cdlemk5.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
46 cdlemk5.z . . . . . . . . 9 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
47 cdlemk5.y . . . . . . . . 9 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
482, 41, 42, 43, 44, 3, 4, 45, 46, 47cdlemkid2 38064 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐺 / 𝑔𝑌 = 𝑃)
4934, 35, 36, 37, 40, 48syl113anc 1378 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))) → 𝐺 / 𝑔𝑌 = 𝑃)
50493expa 1114 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏𝑇) ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))) → 𝐺 / 𝑔𝑌 = 𝑃)
5150eqeq2d 2835 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏𝑇) ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))) → ((𝑧𝑃) = 𝐺 / 𝑔𝑌 ↔ (𝑧𝑃) = 𝑃))
5251pm5.74da 802 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏𝑇) → (((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝐺 / 𝑔𝑌) ↔ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑃)))
5352ralbidva 3199 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → (∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝐺 / 𝑔𝑌) ↔ ∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑃)))
5453riotabidv 7119 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝐺 / 𝑔𝑌)) = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑃)))
5533, 54eqtrd 2859 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → 𝐺 / 𝑔𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  [wsbc 3775  csb 3886   class class class wbr 5069   I cid 5462  ccnv 5557  cres 5560  ccom 5562  cfv 6358  crio 7116  (class class class)co 7159  Basecbs 16486  lecple 16575  joincjn 17557  meetcmee 17558  Atomscatm 36403  HLchlt 36490  LHypclh 37124  LTrncltrn 37241  trLctrl 37298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-riotaBAD 36093
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-undef 7942  df-map 8411  df-proset 17541  df-poset 17559  df-plt 17571  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p0 17652  df-p1 17653  df-lat 17659  df-clat 17721  df-oposet 36316  df-ol 36318  df-oml 36319  df-covers 36406  df-ats 36407  df-atl 36438  df-cvlat 36462  df-hlat 36491  df-llines 36638  df-lplanes 36639  df-lvols 36640  df-lines 36641  df-psubsp 36643  df-pmap 36644  df-padd 36936  df-lhyp 37128  df-laut 37129  df-ldil 37244  df-ltrn 37245  df-trl 37299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator