Proof of Theorem cdlemkid3N
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp3r 1203 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → 𝐺 = ( I ↾ 𝐵)) | 
| 2 |  | cdlemk5.b | . . . . . 6
⊢ 𝐵 = (Base‘𝐾) | 
| 3 |  | cdlemk5.h | . . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) | 
| 4 |  | cdlemk5.t | . . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 5 | 2, 3, 4 | idltrn 40152 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) | 
| 6 | 5 | 3ad2ant1 1134 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ( I ↾ 𝐵) ∈ 𝑇) | 
| 7 | 1, 6 | eqeltrd 2841 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → 𝐺 ∈ 𝑇) | 
| 8 |  | cdlemk5.x | . . . . . 6
⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) | 
| 9 | 8 | csbeq2i 3907 | . . . . 5
⊢
⦋𝐺 /
𝑔⦌𝑋 = ⦋𝐺 / 𝑔⦌(℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) | 
| 10 |  | csbriota 7403 | . . . . . 6
⊢
⦋𝐺 /
𝑔⦌(℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) = (℩𝑧 ∈ 𝑇 [𝐺 / 𝑔]∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) | 
| 11 | 10 | a1i 11 | . . . . 5
⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌(℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) = (℩𝑧 ∈ 𝑇 [𝐺 / 𝑔]∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌))) | 
| 12 | 9, 11 | eqtrid 2789 | . . . 4
⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑋 = (℩𝑧 ∈ 𝑇 [𝐺 / 𝑔]∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌))) | 
| 13 |  | sbcralg 3874 | . . . . . 6
⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔]∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌) ↔ ∀𝑏 ∈ 𝑇 [𝐺 / 𝑔]((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌))) | 
| 14 |  | sbcimg 3837 | . . . . . . . 8
⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔]((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌) ↔ ([𝐺 / 𝑔](𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → [𝐺 / 𝑔](𝑧‘𝑃) = 𝑌))) | 
| 15 |  | sbc3an 3855 | . . . . . . . . . 10
⊢
([𝐺 / 𝑔](𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) ↔ ([𝐺 / 𝑔]𝑏 ≠ ( I ↾ 𝐵) ∧ [𝐺 / 𝑔](𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ [𝐺 / 𝑔](𝑅‘𝑏) ≠ (𝑅‘𝑔))) | 
| 16 |  | sbcg 3863 | . . . . . . . . . . 11
⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔]𝑏 ≠ ( I ↾ 𝐵) ↔ 𝑏 ≠ ( I ↾ 𝐵))) | 
| 17 |  | sbcg 3863 | . . . . . . . . . . 11
⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔](𝑅‘𝑏) ≠ (𝑅‘𝐹) ↔ (𝑅‘𝑏) ≠ (𝑅‘𝐹))) | 
| 18 |  | sbcne12 4415 | . . . . . . . . . . . 12
⊢
([𝐺 / 𝑔](𝑅‘𝑏) ≠ (𝑅‘𝑔) ↔ ⦋𝐺 / 𝑔⦌(𝑅‘𝑏) ≠ ⦋𝐺 / 𝑔⦌(𝑅‘𝑔)) | 
| 19 |  | csbconstg 3918 | . . . . . . . . . . . . 13
⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌(𝑅‘𝑏) = (𝑅‘𝑏)) | 
| 20 |  | csbfv 6956 | . . . . . . . . . . . . . 14
⊢
⦋𝐺 /
𝑔⦌(𝑅‘𝑔) = (𝑅‘𝐺) | 
| 21 | 20 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌(𝑅‘𝑔) = (𝑅‘𝐺)) | 
| 22 | 19, 21 | neeq12d 3002 | . . . . . . . . . . . 12
⊢ (𝐺 ∈ 𝑇 → (⦋𝐺 / 𝑔⦌(𝑅‘𝑏) ≠ ⦋𝐺 / 𝑔⦌(𝑅‘𝑔) ↔ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) | 
| 23 | 18, 22 | bitrid 283 | . . . . . . . . . . 11
⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔](𝑅‘𝑏) ≠ (𝑅‘𝑔) ↔ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) | 
| 24 | 16, 17, 23 | 3anbi123d 1438 | . . . . . . . . . 10
⊢ (𝐺 ∈ 𝑇 → (([𝐺 / 𝑔]𝑏 ≠ ( I ↾ 𝐵) ∧ [𝐺 / 𝑔](𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ [𝐺 / 𝑔](𝑅‘𝑏) ≠ (𝑅‘𝑔)) ↔ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) | 
| 25 | 15, 24 | bitrid 283 | . . . . . . . . 9
⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔](𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) ↔ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) | 
| 26 |  | sbceq2g 4419 | . . . . . . . . 9
⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔](𝑧‘𝑃) = 𝑌 ↔ (𝑧‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌)) | 
| 27 | 25, 26 | imbi12d 344 | . . . . . . . 8
⊢ (𝐺 ∈ 𝑇 → (([𝐺 / 𝑔](𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → [𝐺 / 𝑔](𝑧‘𝑃) = 𝑌) ↔ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → (𝑧‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌))) | 
| 28 | 14, 27 | bitrd 279 | . . . . . . 7
⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔]((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌) ↔ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → (𝑧‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌))) | 
| 29 | 28 | ralbidv 3178 | . . . . . 6
⊢ (𝐺 ∈ 𝑇 → (∀𝑏 ∈ 𝑇 [𝐺 / 𝑔]((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌) ↔ ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → (𝑧‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌))) | 
| 30 | 13, 29 | bitrd 279 | . . . . 5
⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔]∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌) ↔ ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → (𝑧‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌))) | 
| 31 | 30 | riotabidv 7390 | . . . 4
⊢ (𝐺 ∈ 𝑇 → (℩𝑧 ∈ 𝑇 [𝐺 / 𝑔]∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → (𝑧‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌))) | 
| 32 | 12, 31 | eqtrd 2777 | . . 3
⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → (𝑧‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌))) | 
| 33 | 7, 32 | syl 17 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ⦋𝐺 / 𝑔⦌𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → (𝑧‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌))) | 
| 34 |  | simp11 1204 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 35 |  | simp12 1205 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) → (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) | 
| 36 |  | simp13l 1289 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 37 |  | simp13r 1290 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) → 𝐺 = ( I ↾ 𝐵)) | 
| 38 |  | simp2 1138 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) → 𝑏 ∈ 𝑇) | 
| 39 |  | simp31 1210 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) → 𝑏 ≠ ( I ↾ 𝐵)) | 
| 40 | 38, 39 | jca 511 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) → (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵))) | 
| 41 |  | cdlemk5.l | . . . . . . . . 9
⊢  ≤ =
(le‘𝐾) | 
| 42 |  | cdlemk5.j | . . . . . . . . 9
⊢  ∨ =
(join‘𝐾) | 
| 43 |  | cdlemk5.m | . . . . . . . . 9
⊢  ∧ =
(meet‘𝐾) | 
| 44 |  | cdlemk5.a | . . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) | 
| 45 |  | cdlemk5.r | . . . . . . . . 9
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 46 |  | cdlemk5.z | . . . . . . . . 9
⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) | 
| 47 |  | cdlemk5.y | . . . . . . . . 9
⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | 
| 48 | 2, 41, 42, 43, 44, 3, 4, 45, 46, 47 | cdlemkid2 40926 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵)))) → ⦋𝐺 / 𝑔⦌𝑌 = 𝑃) | 
| 49 | 34, 35, 36, 37, 40, 48 | syl113anc 1384 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) → ⦋𝐺 / 𝑔⦌𝑌 = 𝑃) | 
| 50 | 49 | 3expa 1119 | . . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇) ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) → ⦋𝐺 / 𝑔⦌𝑌 = 𝑃) | 
| 51 | 50 | eqeq2d 2748 | . . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇) ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) → ((𝑧‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌 ↔ (𝑧‘𝑃) = 𝑃)) | 
| 52 | 51 | pm5.74da 804 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇) → (((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → (𝑧‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌) ↔ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → (𝑧‘𝑃) = 𝑃))) | 
| 53 | 52 | ralbidva 3176 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → (∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → (𝑧‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌) ↔ ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → (𝑧‘𝑃) = 𝑃))) | 
| 54 | 53 | riotabidv 7390 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → (𝑧‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌)) = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → (𝑧‘𝑃) = 𝑃))) | 
| 55 | 33, 54 | eqtrd 2777 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ⦋𝐺 / 𝑔⦌𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → (𝑧‘𝑃) = 𝑃))) |