Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj89 Structured version   Visualization version   GIF version

Theorem bnj89 31890
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj89.1 𝑍 ∈ V
Assertion
Ref Expression
bnj89 ([𝑍 / 𝑦]∃!𝑥𝜑 ↔ ∃!𝑥[𝑍 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑍   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑍(𝑦)

Proof of Theorem bnj89
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbcex2 3831 . . 3 ([𝑍 / 𝑦]𝑤𝑥(𝜑𝑥 = 𝑤) ↔ ∃𝑤[𝑍 / 𝑦]𝑥(𝜑𝑥 = 𝑤))
2 sbcal 3830 . . . 4 ([𝑍 / 𝑦]𝑥(𝜑𝑥 = 𝑤) ↔ ∀𝑥[𝑍 / 𝑦](𝜑𝑥 = 𝑤))
32exbii 1839 . . 3 (∃𝑤[𝑍 / 𝑦]𝑥(𝜑𝑥 = 𝑤) ↔ ∃𝑤𝑥[𝑍 / 𝑦](𝜑𝑥 = 𝑤))
4 bnj89.1 . . . . . . 7 𝑍 ∈ V
5 sbcbig 3820 . . . . . . 7 (𝑍 ∈ V → ([𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ([𝑍 / 𝑦]𝜑[𝑍 / 𝑦]𝑥 = 𝑤)))
64, 5ax-mp 5 . . . . . 6 ([𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ([𝑍 / 𝑦]𝜑[𝑍 / 𝑦]𝑥 = 𝑤))
7 sbcg 3844 . . . . . . . 8 (𝑍 ∈ V → ([𝑍 / 𝑦]𝑥 = 𝑤𝑥 = 𝑤))
84, 7ax-mp 5 . . . . . . 7 ([𝑍 / 𝑦]𝑥 = 𝑤𝑥 = 𝑤)
98bibi2i 339 . . . . . 6 (([𝑍 / 𝑦]𝜑[𝑍 / 𝑦]𝑥 = 𝑤) ↔ ([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
106, 9bitri 276 . . . . 5 ([𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
1110albii 1811 . . . 4 (∀𝑥[𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ∀𝑥([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
1211exbii 1839 . . 3 (∃𝑤𝑥[𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ∃𝑤𝑥([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
131, 3, 123bitri 298 . 2 ([𝑍 / 𝑦]𝑤𝑥(𝜑𝑥 = 𝑤) ↔ ∃𝑤𝑥([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
14 eu6 2652 . . 3 (∃!𝑥𝜑 ↔ ∃𝑤𝑥(𝜑𝑥 = 𝑤))
1514sbcbii 3826 . 2 ([𝑍 / 𝑦]∃!𝑥𝜑[𝑍 / 𝑦]𝑤𝑥(𝜑𝑥 = 𝑤))
16 eu6 2652 . 2 (∃!𝑥[𝑍 / 𝑦]𝜑 ↔ ∃𝑤𝑥([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
1713, 15, 163bitr4i 304 1 ([𝑍 / 𝑦]∃!𝑥𝜑 ↔ ∃!𝑥[𝑍 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 207  wal 1526  wex 1771  wcel 2105  ∃!weu 2646  Vcvv 3492  [wsbc 3769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-v 3494  df-sbc 3770
This theorem is referenced by:  bnj130  32045  bnj207  32052
  Copyright terms: Public domain W3C validator