Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj89 Structured version   Visualization version   GIF version

Theorem bnj89 34697
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj89.1 𝑍 ∈ V
Assertion
Ref Expression
bnj89 ([𝑍 / 𝑦]∃!𝑥𝜑 ↔ ∃!𝑥[𝑍 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑍   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑍(𝑦)

Proof of Theorem bnj89
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbcex2 3869 . . 3 ([𝑍 / 𝑦]𝑤𝑥(𝜑𝑥 = 𝑤) ↔ ∃𝑤[𝑍 / 𝑦]𝑥(𝜑𝑥 = 𝑤))
2 sbcal 3868 . . . 4 ([𝑍 / 𝑦]𝑥(𝜑𝑥 = 𝑤) ↔ ∀𝑥[𝑍 / 𝑦](𝜑𝑥 = 𝑤))
32exbii 1846 . . 3 (∃𝑤[𝑍 / 𝑦]𝑥(𝜑𝑥 = 𝑤) ↔ ∃𝑤𝑥[𝑍 / 𝑦](𝜑𝑥 = 𝑤))
4 bnj89.1 . . . . . . 7 𝑍 ∈ V
5 sbcbig 3859 . . . . . . 7 (𝑍 ∈ V → ([𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ([𝑍 / 𝑦]𝜑[𝑍 / 𝑦]𝑥 = 𝑤)))
64, 5ax-mp 5 . . . . . 6 ([𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ([𝑍 / 𝑦]𝜑[𝑍 / 𝑦]𝑥 = 𝑤))
7 sbcg 3883 . . . . . . . 8 (𝑍 ∈ V → ([𝑍 / 𝑦]𝑥 = 𝑤𝑥 = 𝑤))
84, 7ax-mp 5 . . . . . . 7 ([𝑍 / 𝑦]𝑥 = 𝑤𝑥 = 𝑤)
98bibi2i 337 . . . . . 6 (([𝑍 / 𝑦]𝜑[𝑍 / 𝑦]𝑥 = 𝑤) ↔ ([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
106, 9bitri 275 . . . . 5 ([𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
1110albii 1817 . . . 4 (∀𝑥[𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ∀𝑥([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
1211exbii 1846 . . 3 (∃𝑤𝑥[𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ∃𝑤𝑥([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
131, 3, 123bitri 297 . 2 ([𝑍 / 𝑦]𝑤𝑥(𝜑𝑥 = 𝑤) ↔ ∃𝑤𝑥([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
14 eu6 2577 . . 3 (∃!𝑥𝜑 ↔ ∃𝑤𝑥(𝜑𝑥 = 𝑤))
1514sbcbii 3865 . 2 ([𝑍 / 𝑦]∃!𝑥𝜑[𝑍 / 𝑦]𝑤𝑥(𝜑𝑥 = 𝑤))
16 eu6 2577 . 2 (∃!𝑥[𝑍 / 𝑦]𝜑 ↔ ∃𝑤𝑥([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
1713, 15, 163bitr4i 303 1 ([𝑍 / 𝑦]∃!𝑥𝜑 ↔ ∃!𝑥[𝑍 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535  wex 1777  wcel 2108  ∃!weu 2571  Vcvv 3488  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-sbc 3805
This theorem is referenced by:  bnj130  34850  bnj207  34857
  Copyright terms: Public domain W3C validator