MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcop1 Structured version   Visualization version   GIF version

Theorem sbcop1 5356
Description: The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of its first component. (Contributed by AV, 8-Apr-2023.)
Hypothesis
Ref Expression
sbcop.z (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
sbcop1 ([𝑎 / 𝑥]𝜓[𝑎, 𝑦⟩ / 𝑧]𝜑)
Distinct variable groups:   𝑥,𝑎,𝑦,𝑧   𝜑,𝑥,𝑦   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑎)   𝜓(𝑥,𝑦,𝑎)

Proof of Theorem sbcop1
StepHypRef Expression
1 sbc5 3711 . . . . 5 ([𝑎 / 𝑥]𝜓 ↔ ∃𝑥(𝑥 = 𝑎𝜓))
2 opeq1 4770 . . . . . . . . . . 11 (𝑎 = 𝑥 → ⟨𝑎, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
32equcoms 2030 . . . . . . . . . 10 (𝑥 = 𝑎 → ⟨𝑎, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
43eqeq2d 2747 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑧 = ⟨𝑎, 𝑦⟩ ↔ 𝑧 = ⟨𝑥, 𝑦⟩))
5 sbcop.z . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
65biimprd 251 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
74, 6syl6bi 256 . . . . . . . 8 (𝑥 = 𝑎 → (𝑧 = ⟨𝑎, 𝑦⟩ → (𝜓𝜑)))
87com23 86 . . . . . . 7 (𝑥 = 𝑎 → (𝜓 → (𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑)))
98imp 410 . . . . . 6 ((𝑥 = 𝑎𝜓) → (𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
109exlimiv 1938 . . . . 5 (∃𝑥(𝑥 = 𝑎𝜓) → (𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
111, 10sylbi 220 . . . 4 ([𝑎 / 𝑥]𝜓 → (𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
1211alrimiv 1935 . . 3 ([𝑎 / 𝑥]𝜓 → ∀𝑧(𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
13 opex 5333 . . . 4 𝑎, 𝑦⟩ ∈ V
1413sbc6 3715 . . 3 ([𝑎, 𝑦⟩ / 𝑧]𝜑 ↔ ∀𝑧(𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
1512, 14sylibr 237 . 2 ([𝑎 / 𝑥]𝜓[𝑎, 𝑦⟩ / 𝑧]𝜑)
16 sbc5 3711 . . 3 ([𝑎, 𝑦⟩ / 𝑧]𝜑 ↔ ∃𝑧(𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑))
175biimpd 232 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
184, 17syl6bi 256 . . . . . . . 8 (𝑥 = 𝑎 → (𝑧 = ⟨𝑎, 𝑦⟩ → (𝜑𝜓)))
1918com3l 89 . . . . . . 7 (𝑧 = ⟨𝑎, 𝑦⟩ → (𝜑 → (𝑥 = 𝑎𝜓)))
2019imp 410 . . . . . 6 ((𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑) → (𝑥 = 𝑎𝜓))
2120alrimiv 1935 . . . . 5 ((𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑) → ∀𝑥(𝑥 = 𝑎𝜓))
22 vex 3402 . . . . . 6 𝑎 ∈ V
2322sbc6 3715 . . . . 5 ([𝑎 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑎𝜓))
2421, 23sylibr 237 . . . 4 ((𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑) → [𝑎 / 𝑥]𝜓)
2524exlimiv 1938 . . 3 (∃𝑧(𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑) → [𝑎 / 𝑥]𝜓)
2616, 25sylbi 220 . 2 ([𝑎, 𝑦⟩ / 𝑧]𝜑[𝑎 / 𝑥]𝜓)
2715, 26impbii 212 1 ([𝑎 / 𝑥]𝜓[𝑎, 𝑦⟩ / 𝑧]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1541   = wceq 1543  wex 1787  [wsbc 3683  cop 4533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534
This theorem is referenced by:  sbcop  5357
  Copyright terms: Public domain W3C validator