MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcop1 Structured version   Visualization version   GIF version

Theorem sbcop1 5402
Description: The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of its first component. (Contributed by AV, 8-Apr-2023.)
Hypothesis
Ref Expression
sbcop.z (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
sbcop1 ([𝑎 / 𝑥]𝜓[𝑎, 𝑦⟩ / 𝑧]𝜑)
Distinct variable groups:   𝑥,𝑎,𝑦,𝑧   𝜑,𝑥,𝑦   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑎)   𝜓(𝑥,𝑦,𝑎)

Proof of Theorem sbcop1
StepHypRef Expression
1 sbc5 3744 . . . . 5 ([𝑎 / 𝑥]𝜓 ↔ ∃𝑥(𝑥 = 𝑎𝜓))
2 opeq1 4804 . . . . . . . . . . 11 (𝑎 = 𝑥 → ⟨𝑎, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
32equcoms 2023 . . . . . . . . . 10 (𝑥 = 𝑎 → ⟨𝑎, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
43eqeq2d 2749 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑧 = ⟨𝑎, 𝑦⟩ ↔ 𝑧 = ⟨𝑥, 𝑦⟩))
5 sbcop.z . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
65biimprd 247 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
74, 6syl6bi 252 . . . . . . . 8 (𝑥 = 𝑎 → (𝑧 = ⟨𝑎, 𝑦⟩ → (𝜓𝜑)))
87com23 86 . . . . . . 7 (𝑥 = 𝑎 → (𝜓 → (𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑)))
98imp 407 . . . . . 6 ((𝑥 = 𝑎𝜓) → (𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
109exlimiv 1933 . . . . 5 (∃𝑥(𝑥 = 𝑎𝜓) → (𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
111, 10sylbi 216 . . . 4 ([𝑎 / 𝑥]𝜓 → (𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
1211alrimiv 1930 . . 3 ([𝑎 / 𝑥]𝜓 → ∀𝑧(𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
13 opex 5379 . . . 4 𝑎, 𝑦⟩ ∈ V
1413sbc6 3748 . . 3 ([𝑎, 𝑦⟩ / 𝑧]𝜑 ↔ ∀𝑧(𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
1512, 14sylibr 233 . 2 ([𝑎 / 𝑥]𝜓[𝑎, 𝑦⟩ / 𝑧]𝜑)
16 sbc5 3744 . . 3 ([𝑎, 𝑦⟩ / 𝑧]𝜑 ↔ ∃𝑧(𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑))
175biimpd 228 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
184, 17syl6bi 252 . . . . . . . 8 (𝑥 = 𝑎 → (𝑧 = ⟨𝑎, 𝑦⟩ → (𝜑𝜓)))
1918com3l 89 . . . . . . 7 (𝑧 = ⟨𝑎, 𝑦⟩ → (𝜑 → (𝑥 = 𝑎𝜓)))
2019imp 407 . . . . . 6 ((𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑) → (𝑥 = 𝑎𝜓))
2120alrimiv 1930 . . . . 5 ((𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑) → ∀𝑥(𝑥 = 𝑎𝜓))
22 vex 3436 . . . . . 6 𝑎 ∈ V
2322sbc6 3748 . . . . 5 ([𝑎 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑎𝜓))
2421, 23sylibr 233 . . . 4 ((𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑) → [𝑎 / 𝑥]𝜓)
2524exlimiv 1933 . . 3 (∃𝑧(𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑) → [𝑎 / 𝑥]𝜓)
2616, 25sylbi 216 . 2 ([𝑎, 𝑦⟩ / 𝑧]𝜑[𝑎 / 𝑥]𝜓)
2715, 26impbii 208 1 ([𝑎 / 𝑥]𝜓[𝑎, 𝑦⟩ / 𝑧]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  [wsbc 3716  cop 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568
This theorem is referenced by:  sbcop  5403
  Copyright terms: Public domain W3C validator