MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcop1 Structured version   Visualization version   GIF version

Theorem sbcop1 5508
Description: The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of its first component. (Contributed by AV, 8-Apr-2023.)
Hypothesis
Ref Expression
sbcop.z (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
sbcop1 ([𝑎 / 𝑥]𝜓[𝑎, 𝑦⟩ / 𝑧]𝜑)
Distinct variable groups:   𝑥,𝑎,𝑦,𝑧   𝜑,𝑥,𝑦   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑎)   𝜓(𝑥,𝑦,𝑎)

Proof of Theorem sbcop1
StepHypRef Expression
1 sbc5 3832 . . . . 5 ([𝑎 / 𝑥]𝜓 ↔ ∃𝑥(𝑥 = 𝑎𝜓))
2 opeq1 4897 . . . . . . . . . . 11 (𝑎 = 𝑥 → ⟨𝑎, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
32equcoms 2019 . . . . . . . . . 10 (𝑥 = 𝑎 → ⟨𝑎, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
43eqeq2d 2751 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑧 = ⟨𝑎, 𝑦⟩ ↔ 𝑧 = ⟨𝑥, 𝑦⟩))
5 sbcop.z . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
65biimprd 248 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
74, 6biimtrdi 253 . . . . . . . 8 (𝑥 = 𝑎 → (𝑧 = ⟨𝑎, 𝑦⟩ → (𝜓𝜑)))
87com23 86 . . . . . . 7 (𝑥 = 𝑎 → (𝜓 → (𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑)))
98imp 406 . . . . . 6 ((𝑥 = 𝑎𝜓) → (𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
109exlimiv 1929 . . . . 5 (∃𝑥(𝑥 = 𝑎𝜓) → (𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
111, 10sylbi 217 . . . 4 ([𝑎 / 𝑥]𝜓 → (𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
1211alrimiv 1926 . . 3 ([𝑎 / 𝑥]𝜓 → ∀𝑧(𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
13 opex 5484 . . . 4 𝑎, 𝑦⟩ ∈ V
1413sbc6 3836 . . 3 ([𝑎, 𝑦⟩ / 𝑧]𝜑 ↔ ∀𝑧(𝑧 = ⟨𝑎, 𝑦⟩ → 𝜑))
1512, 14sylibr 234 . 2 ([𝑎 / 𝑥]𝜓[𝑎, 𝑦⟩ / 𝑧]𝜑)
16 sbc5 3832 . . 3 ([𝑎, 𝑦⟩ / 𝑧]𝜑 ↔ ∃𝑧(𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑))
175biimpd 229 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
184, 17biimtrdi 253 . . . . . . . 8 (𝑥 = 𝑎 → (𝑧 = ⟨𝑎, 𝑦⟩ → (𝜑𝜓)))
1918com3l 89 . . . . . . 7 (𝑧 = ⟨𝑎, 𝑦⟩ → (𝜑 → (𝑥 = 𝑎𝜓)))
2019imp 406 . . . . . 6 ((𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑) → (𝑥 = 𝑎𝜓))
2120alrimiv 1926 . . . . 5 ((𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑) → ∀𝑥(𝑥 = 𝑎𝜓))
22 vex 3492 . . . . . 6 𝑎 ∈ V
2322sbc6 3836 . . . . 5 ([𝑎 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑎𝜓))
2421, 23sylibr 234 . . . 4 ((𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑) → [𝑎 / 𝑥]𝜓)
2524exlimiv 1929 . . 3 (∃𝑧(𝑧 = ⟨𝑎, 𝑦⟩ ∧ 𝜑) → [𝑎 / 𝑥]𝜓)
2616, 25sylbi 217 . 2 ([𝑎, 𝑦⟩ / 𝑧]𝜑[𝑎 / 𝑥]𝜓)
2715, 26impbii 209 1 ([𝑎 / 𝑥]𝜓[𝑎, 𝑦⟩ / 𝑧]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1777  [wsbc 3804  cop 4654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655
This theorem is referenced by:  sbcop  5509
  Copyright terms: Public domain W3C validator