MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcralt Structured version   Visualization version   GIF version

Theorem sbcralt 3669
Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.)
Assertion
Ref Expression
sbcralt ((𝐴𝑉𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcralt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcco 3619 . 2 ([𝐴 / 𝑧][𝑧 / 𝑥]𝑦𝐵 𝜑[𝐴 / 𝑥]𝑦𝐵 𝜑)
2 simpl 474 . . 3 ((𝐴𝑉𝑦𝐴) → 𝐴𝑉)
3 sbsbc 3600 . . . . 5 ([𝑧 / 𝑥]∀𝑦𝐵 𝜑[𝑧 / 𝑥]𝑦𝐵 𝜑)
4 nfcv 2907 . . . . . . 7 𝑥𝐵
5 nfs1v 2287 . . . . . . 7 𝑥[𝑧 / 𝑥]𝜑
64, 5nfral 3092 . . . . . 6 𝑥𝑦𝐵 [𝑧 / 𝑥]𝜑
7 sbequ12 2278 . . . . . . 7 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
87ralbidv 3133 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑧 / 𝑥]𝜑))
96, 8sbie 2499 . . . . 5 ([𝑧 / 𝑥]∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑧 / 𝑥]𝜑)
103, 9bitr3i 268 . . . 4 ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑧 / 𝑥]𝜑)
11 nfnfc1 2910 . . . . . . 7 𝑦𝑦𝐴
12 nfcvd 2908 . . . . . . . 8 (𝑦𝐴𝑦𝑧)
13 id 22 . . . . . . . 8 (𝑦𝐴𝑦𝐴)
1412, 13nfeqd 2915 . . . . . . 7 (𝑦𝐴 → Ⅎ𝑦 𝑧 = 𝐴)
1511, 14nfan1 2230 . . . . . 6 𝑦(𝑦𝐴𝑧 = 𝐴)
16 dfsbcq2 3599 . . . . . . 7 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
1716adantl 473 . . . . . 6 ((𝑦𝐴𝑧 = 𝐴) → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
1815, 17ralbid 3130 . . . . 5 ((𝑦𝐴𝑧 = 𝐴) → (∀𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
1918adantll 705 . . . 4 (((𝐴𝑉𝑦𝐴) ∧ 𝑧 = 𝐴) → (∀𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
2010, 19syl5bb 274 . . 3 (((𝐴𝑉𝑦𝐴) ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
212, 20sbcied 3633 . 2 ((𝐴𝑉𝑦𝐴) → ([𝐴 / 𝑧][𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
221, 21syl5bbr 276 1 ((𝐴𝑉𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  [wsb 2062  wcel 2155  wnfc 2894  wral 3055  [wsbc 3596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-v 3352  df-sbc 3597
This theorem is referenced by:  sbcrext  3670  sbcralg  3671
  Copyright terms: Public domain W3C validator