MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcfung Structured version   Visualization version   GIF version

Theorem sbcfung 6525
Description: Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcfung (𝐴𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun 𝐴 / 𝑥𝐹))

Proof of Theorem sbcfung
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcan 3791 . . 3 ([𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦)) ↔ ([𝐴 / 𝑥]Rel 𝐹[𝐴 / 𝑥]𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦)))
2 sbcrel 5736 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]Rel 𝐹 ↔ Rel 𝐴 / 𝑥𝐹))
3 sbcal 3803 . . . . 5 ([𝐴 / 𝑥]𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∀𝑤[𝐴 / 𝑥]𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦))
4 sbcex2 3804 . . . . . . 7 ([𝐴 / 𝑥]𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∃𝑦[𝐴 / 𝑥]𝑧(𝑤𝐹𝑧𝑧 = 𝑦))
5 sbcal 3803 . . . . . . . . 9 ([𝐴 / 𝑥]𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∀𝑧[𝐴 / 𝑥](𝑤𝐹𝑧𝑧 = 𝑦))
6 sbcimg 3790 . . . . . . . . . . 11 (𝐴𝑉 → ([𝐴 / 𝑥](𝑤𝐹𝑧𝑧 = 𝑦) ↔ ([𝐴 / 𝑥]𝑤𝐹𝑧[𝐴 / 𝑥]𝑧 = 𝑦)))
7 sbcbr123 5159 . . . . . . . . . . . . 13 ([𝐴 / 𝑥]𝑤𝐹𝑧𝐴 / 𝑥𝑤𝐴 / 𝑥𝐹𝐴 / 𝑥𝑧)
8 csbconstg 3874 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 / 𝑥𝑤 = 𝑤)
9 csbconstg 3874 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 / 𝑥𝑧 = 𝑧)
108, 9breq12d 5118 . . . . . . . . . . . . 13 (𝐴𝑉 → (𝐴 / 𝑥𝑤𝐴 / 𝑥𝐹𝐴 / 𝑥𝑧𝑤𝐴 / 𝑥𝐹𝑧))
117, 10bitrid 282 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑧𝑤𝐴 / 𝑥𝐹𝑧))
12 sbcg 3818 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧 = 𝑦𝑧 = 𝑦))
1311, 12imbi12d 344 . . . . . . . . . . 11 (𝐴𝑉 → (([𝐴 / 𝑥]𝑤𝐹𝑧[𝐴 / 𝑥]𝑧 = 𝑦) ↔ (𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
146, 13bitrd 278 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥](𝑤𝐹𝑧𝑧 = 𝑦) ↔ (𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
1514albidv 1923 . . . . . . . . 9 (𝐴𝑉 → (∀𝑧[𝐴 / 𝑥](𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∀𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
165, 15bitrid 282 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∀𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
1716exbidv 1924 . . . . . . 7 (𝐴𝑉 → (∃𝑦[𝐴 / 𝑥]𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∃𝑦𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
184, 17bitrid 282 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∃𝑦𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
1918albidv 1923 . . . . 5 (𝐴𝑉 → (∀𝑤[𝐴 / 𝑥]𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∀𝑤𝑦𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
203, 19bitrid 282 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∀𝑤𝑦𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
212, 20anbi12d 631 . . 3 (𝐴𝑉 → (([𝐴 / 𝑥]Rel 𝐹[𝐴 / 𝑥]𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦)) ↔ (Rel 𝐴 / 𝑥𝐹 ∧ ∀𝑤𝑦𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦))))
221, 21bitrid 282 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦)) ↔ (Rel 𝐴 / 𝑥𝐹 ∧ ∀𝑤𝑦𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦))))
23 dffun3 6510 . . 3 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦)))
2423sbcbii 3799 . 2 ([𝐴 / 𝑥]Fun 𝐹[𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦)))
25 dffun3 6510 . 2 (Fun 𝐴 / 𝑥𝐹 ↔ (Rel 𝐴 / 𝑥𝐹 ∧ ∀𝑤𝑦𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
2622, 24, 253bitr4g 313 1 (𝐴𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun 𝐴 / 𝑥𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539  wex 1781  wcel 2106  [wsbc 3739  csb 3855   class class class wbr 5105  Rel wrel 5638  Fun wfun 6490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-fun 6498
This theorem is referenced by:  sbcfng  6665  esum2dlem  32691
  Copyright terms: Public domain W3C validator