MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcfung Structured version   Visualization version   GIF version

Theorem sbcfung 6092
Description: Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcfung (𝐴𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun 𝐴 / 𝑥𝐹))

Proof of Theorem sbcfung
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcan 3639 . . 3 ([𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦)) ↔ ([𝐴 / 𝑥]Rel 𝐹[𝐴 / 𝑥]𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦)))
2 sbcrel 5375 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]Rel 𝐹 ↔ Rel 𝐴 / 𝑥𝐹))
3 sbcal 3646 . . . . 5 ([𝐴 / 𝑥]𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∀𝑤[𝐴 / 𝑥]𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦))
4 sbcex2 3647 . . . . . . 7 ([𝐴 / 𝑥]𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∃𝑦[𝐴 / 𝑥]𝑧(𝑤𝐹𝑧𝑧 = 𝑦))
5 sbcal 3646 . . . . . . . . 9 ([𝐴 / 𝑥]𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∀𝑧[𝐴 / 𝑥](𝑤𝐹𝑧𝑧 = 𝑦))
6 sbcimg 3638 . . . . . . . . . . 11 (𝐴𝑉 → ([𝐴 / 𝑥](𝑤𝐹𝑧𝑧 = 𝑦) ↔ ([𝐴 / 𝑥]𝑤𝐹𝑧[𝐴 / 𝑥]𝑧 = 𝑦)))
7 sbcbr123 4863 . . . . . . . . . . . . 13 ([𝐴 / 𝑥]𝑤𝐹𝑧𝐴 / 𝑥𝑤𝐴 / 𝑥𝐹𝐴 / 𝑥𝑧)
8 csbconstg 3704 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 / 𝑥𝑤 = 𝑤)
9 csbconstg 3704 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 / 𝑥𝑧 = 𝑧)
108, 9breq12d 4822 . . . . . . . . . . . . 13 (𝐴𝑉 → (𝐴 / 𝑥𝑤𝐴 / 𝑥𝐹𝐴 / 𝑥𝑧𝑤𝐴 / 𝑥𝐹𝑧))
117, 10syl5bb 274 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑧𝑤𝐴 / 𝑥𝐹𝑧))
12 sbcg 3662 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧 = 𝑦𝑧 = 𝑦))
1311, 12imbi12d 335 . . . . . . . . . . 11 (𝐴𝑉 → (([𝐴 / 𝑥]𝑤𝐹𝑧[𝐴 / 𝑥]𝑧 = 𝑦) ↔ (𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
146, 13bitrd 270 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥](𝑤𝐹𝑧𝑧 = 𝑦) ↔ (𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
1514albidv 2015 . . . . . . . . 9 (𝐴𝑉 → (∀𝑧[𝐴 / 𝑥](𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∀𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
165, 15syl5bb 274 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∀𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
1716exbidv 2016 . . . . . . 7 (𝐴𝑉 → (∃𝑦[𝐴 / 𝑥]𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∃𝑦𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
184, 17syl5bb 274 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∃𝑦𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
1918albidv 2015 . . . . 5 (𝐴𝑉 → (∀𝑤[𝐴 / 𝑥]𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∀𝑤𝑦𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
203, 19syl5bb 274 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦) ↔ ∀𝑤𝑦𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
212, 20anbi12d 624 . . 3 (𝐴𝑉 → (([𝐴 / 𝑥]Rel 𝐹[𝐴 / 𝑥]𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦)) ↔ (Rel 𝐴 / 𝑥𝐹 ∧ ∀𝑤𝑦𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦))))
221, 21syl5bb 274 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦)) ↔ (Rel 𝐴 / 𝑥𝐹 ∧ ∀𝑤𝑦𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦))))
23 dffun3 6079 . . 3 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦)))
2423sbcbii 3652 . 2 ([𝐴 / 𝑥]Fun 𝐹[𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤𝑦𝑧(𝑤𝐹𝑧𝑧 = 𝑦)))
25 dffun3 6079 . 2 (Fun 𝐴 / 𝑥𝐹 ↔ (Rel 𝐴 / 𝑥𝐹 ∧ ∀𝑤𝑦𝑧(𝑤𝐴 / 𝑥𝐹𝑧𝑧 = 𝑦)))
2622, 24, 253bitr4g 305 1 (𝐴𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun 𝐴 / 𝑥𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wal 1650  wex 1874  wcel 2155  [wsbc 3596  csb 3691   class class class wbr 4809  Rel wrel 5282  Fun wfun 6062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-br 4810  df-opab 4872  df-id 5185  df-rel 5284  df-cnv 5285  df-co 5286  df-fun 6070
This theorem is referenced by:  sbcfng  6220  esum2dlem  30536
  Copyright terms: Public domain W3C validator