Step | Hyp | Ref
| Expression |
1 | | sbcan 3768 |
. . 3
⊢
([𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤∃𝑦∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦)) ↔ ([𝐴 / 𝑥]Rel 𝐹 ∧ [𝐴 / 𝑥]∀𝑤∃𝑦∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦))) |
2 | | sbcrel 5691 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Rel 𝐹 ↔ Rel ⦋𝐴 / 𝑥⦌𝐹)) |
3 | | sbcal 3780 |
. . . . 5
⊢
([𝐴 / 𝑥]∀𝑤∃𝑦∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦) ↔ ∀𝑤[𝐴 / 𝑥]∃𝑦∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦)) |
4 | | sbcex2 3781 |
. . . . . . 7
⊢
([𝐴 / 𝑥]∃𝑦∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦) ↔ ∃𝑦[𝐴 / 𝑥]∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦)) |
5 | | sbcal 3780 |
. . . . . . . . 9
⊢
([𝐴 / 𝑥]∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦) ↔ ∀𝑧[𝐴 / 𝑥](𝑤𝐹𝑧 → 𝑧 = 𝑦)) |
6 | | sbcimg 3767 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑤𝐹𝑧 → 𝑧 = 𝑦) ↔ ([𝐴 / 𝑥]𝑤𝐹𝑧 → [𝐴 / 𝑥]𝑧 = 𝑦))) |
7 | | sbcbr123 5128 |
. . . . . . . . . . . . 13
⊢
([𝐴 / 𝑥]𝑤𝐹𝑧 ↔ ⦋𝐴 / 𝑥⦌𝑤⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑧) |
8 | | csbconstg 3851 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑤 = 𝑤) |
9 | | csbconstg 3851 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑧 = 𝑧) |
10 | 8, 9 | breq12d 5087 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑤⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑧 ↔ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧)) |
11 | 7, 10 | bitrid 282 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑧 ↔ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧)) |
12 | | sbcg 3795 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧 = 𝑦 ↔ 𝑧 = 𝑦)) |
13 | 11, 12 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝑤𝐹𝑧 → [𝐴 / 𝑥]𝑧 = 𝑦) ↔ (𝑤⦋𝐴 / 𝑥⦌𝐹𝑧 → 𝑧 = 𝑦))) |
14 | 6, 13 | bitrd 278 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑤𝐹𝑧 → 𝑧 = 𝑦) ↔ (𝑤⦋𝐴 / 𝑥⦌𝐹𝑧 → 𝑧 = 𝑦))) |
15 | 14 | albidv 1923 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (∀𝑧[𝐴 / 𝑥](𝑤𝐹𝑧 → 𝑧 = 𝑦) ↔ ∀𝑧(𝑤⦋𝐴 / 𝑥⦌𝐹𝑧 → 𝑧 = 𝑦))) |
16 | 5, 15 | bitrid 282 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦) ↔ ∀𝑧(𝑤⦋𝐴 / 𝑥⦌𝐹𝑧 → 𝑧 = 𝑦))) |
17 | 16 | exbidv 1924 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (∃𝑦[𝐴 / 𝑥]∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦) ↔ ∃𝑦∀𝑧(𝑤⦋𝐴 / 𝑥⦌𝐹𝑧 → 𝑧 = 𝑦))) |
18 | 4, 17 | bitrid 282 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑦∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦) ↔ ∃𝑦∀𝑧(𝑤⦋𝐴 / 𝑥⦌𝐹𝑧 → 𝑧 = 𝑦))) |
19 | 18 | albidv 1923 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (∀𝑤[𝐴 / 𝑥]∃𝑦∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦) ↔ ∀𝑤∃𝑦∀𝑧(𝑤⦋𝐴 / 𝑥⦌𝐹𝑧 → 𝑧 = 𝑦))) |
20 | 3, 19 | bitrid 282 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑤∃𝑦∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦) ↔ ∀𝑤∃𝑦∀𝑧(𝑤⦋𝐴 / 𝑥⦌𝐹𝑧 → 𝑧 = 𝑦))) |
21 | 2, 20 | anbi12d 631 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]Rel 𝐹 ∧ [𝐴 / 𝑥]∀𝑤∃𝑦∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦)) ↔ (Rel ⦋𝐴 / 𝑥⦌𝐹 ∧ ∀𝑤∃𝑦∀𝑧(𝑤⦋𝐴 / 𝑥⦌𝐹𝑧 → 𝑧 = 𝑦)))) |
22 | 1, 21 | bitrid 282 |
. 2
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤∃𝑦∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦)) ↔ (Rel ⦋𝐴 / 𝑥⦌𝐹 ∧ ∀𝑤∃𝑦∀𝑧(𝑤⦋𝐴 / 𝑥⦌𝐹𝑧 → 𝑧 = 𝑦)))) |
23 | | dffun3 6445 |
. . 3
⊢ (Fun
𝐹 ↔ (Rel 𝐹 ∧ ∀𝑤∃𝑦∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦))) |
24 | 23 | sbcbii 3776 |
. 2
⊢
([𝐴 / 𝑥]Fun 𝐹 ↔ [𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤∃𝑦∀𝑧(𝑤𝐹𝑧 → 𝑧 = 𝑦))) |
25 | | dffun3 6445 |
. 2
⊢ (Fun
⦋𝐴 / 𝑥⦌𝐹 ↔ (Rel ⦋𝐴 / 𝑥⦌𝐹 ∧ ∀𝑤∃𝑦∀𝑧(𝑤⦋𝐴 / 𝑥⦌𝐹𝑧 → 𝑧 = 𝑦))) |
26 | 22, 24, 25 | 3bitr4g 314 |
1
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun ⦋𝐴 / 𝑥⦌𝐹)) |