![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-7r | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-7r | ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | ad7antlr 738 | 1 ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: catass 17744 2sqmo 27499 tgbtwnconn1 28601 legso 28625 miriso 28696 footexALT 28744 footex 28747 opphl 28780 lnopp2hpgb 28789 f1otrg 28897 2ndresdju 32667 cyc3genpm 33145 cyc3conja 33150 rloccring 33242 isprmidlc 33440 ssdifidlprm 33451 mxidlprm 33463 qsdrngi 33488 1arithidom 33530 fldext2chn 33719 constrconj 33735 constrfin 33736 constrelextdg2 33737 zarcmplem 33827 afsval 34648 dffltz 42589 smfmullem3 46714 |
Copyright terms: Public domain | W3C validator |