MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-7r Structured version   Visualization version   GIF version

Theorem simp-7r 790
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-7r ((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)

Proof of Theorem simp-7r
StepHypRef Expression
1 id 22 . 2 (𝜓𝜓)
21ad7antlr 739 1 ((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  catass  17731  2sqmo  27496  tgbtwnconn1  28598  legso  28622  miriso  28693  footexALT  28741  footex  28744  opphl  28777  lnopp2hpgb  28786  f1otrg  28894  2ndresdju  32666  cyc3genpm  33155  cyc3conja  33160  rloccring  33257  isprmidlc  33455  ssdifidlprm  33466  mxidlprm  33478  qsdrngi  33503  1arithidom  33545  fldext2chn  33734  constrconj  33750  constrfin  33751  constrelextdg2  33752  zarcmplem  33842  afsval  34665  dffltz  42621  smfmullem3  46749
  Copyright terms: Public domain W3C validator