MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-7r Structured version   Visualization version   GIF version

Theorem simp-7r 789
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-7r ((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)

Proof of Theorem simp-7r
StepHypRef Expression
1 id 22 . 2 (𝜓𝜓)
21ad7antlr 739 1 ((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  catass  17698  2sqmo  27400  tgbtwnconn1  28554  legso  28578  miriso  28649  footexALT  28697  footex  28700  opphl  28733  lnopp2hpgb  28742  f1otrg  28850  2ndresdju  32627  cyc3genpm  33163  cyc3conja  33168  rloccring  33265  isprmidlc  33462  ssdifidlprm  33473  mxidlprm  33485  qsdrngi  33510  1arithidom  33552  fldext2chn  33762  constrconj  33779  constrfin  33780  constrelextdg2  33781  zarcmplem  33912  afsval  34703  dffltz  42657  smfmullem3  46822
  Copyright terms: Public domain W3C validator