| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-7r | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-7r | ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | ad7antlr 739 | 1 ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: catass 17698 2sqmo 27400 tgbtwnconn1 28554 legso 28578 miriso 28649 footexALT 28697 footex 28700 opphl 28733 lnopp2hpgb 28742 f1otrg 28850 2ndresdju 32627 cyc3genpm 33163 cyc3conja 33168 rloccring 33265 isprmidlc 33462 ssdifidlprm 33473 mxidlprm 33485 qsdrngi 33510 1arithidom 33552 fldext2chn 33762 constrconj 33779 constrfin 33780 constrelextdg2 33781 zarcmplem 33912 afsval 34703 dffltz 42657 smfmullem3 46822 |
| Copyright terms: Public domain | W3C validator |