| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-7r | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-7r | ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | ad7antlr 739 | 1 ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: catass 17729 2sqmo 27481 tgbtwnconn1 28583 legso 28607 miriso 28678 footexALT 28726 footex 28729 opphl 28762 lnopp2hpgb 28771 f1otrg 28879 2ndresdju 32659 cyc3genpm 33172 cyc3conja 33177 rloccring 33274 isprmidlc 33475 ssdifidlprm 33486 mxidlprm 33498 qsdrngi 33523 1arithidom 33565 fldext2chn 33769 constrconj 33786 constrfin 33787 constrelextdg2 33788 zarcmplem 33880 afsval 34686 dffltz 42644 smfmullem3 46808 |
| Copyright terms: Public domain | W3C validator |