| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-7r | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-7r | ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | ad7antlr 739 | 1 ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: catass 17610 2sqmo 27364 tgbtwnconn1 28538 legso 28562 miriso 28633 footexALT 28681 footex 28684 opphl 28717 lnopp2hpgb 28726 f1otrg 28834 2ndresdju 32606 cyc3genpm 33107 cyc3conja 33112 rloccring 33223 isprmidlc 33397 ssdifidlprm 33408 mxidlprm 33420 qsdrngi 33445 1arithidom 33487 fldext2chn 33697 constrconj 33714 constrfin 33715 constrelextdg2 33716 zarcmplem 33850 afsval 34641 dffltz 42610 smfmullem3 46778 |
| Copyright terms: Public domain | W3C validator |