| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-7r | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-7r | ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | ad7antlr 739 | 1 ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: catass 17592 2sqmo 27376 tgbtwnconn1 28554 legso 28578 miriso 28649 footexALT 28697 footex 28700 opphl 28733 lnopp2hpgb 28742 f1otrg 28850 2ndresdju 32629 cyc3genpm 33119 cyc3conja 33124 rloccring 33235 isprmidlc 33410 ssdifidlprm 33421 mxidlprm 33433 qsdrngi 33458 1arithidom 33500 fldext2chn 33739 constrconj 33756 constrfin 33757 constrelextdg2 33758 zarcmplem 33892 afsval 34682 dffltz 42673 smfmullem3 46837 |
| Copyright terms: Public domain | W3C validator |