| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-7r | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-7r | ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | ad7antlr 739 | 1 ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: catass 17647 2sqmo 27348 tgbtwnconn1 28502 legso 28526 miriso 28597 footexALT 28645 footex 28648 opphl 28681 lnopp2hpgb 28690 f1otrg 28798 2ndresdju 32573 cyc3genpm 33109 cyc3conja 33114 rloccring 33221 isprmidlc 33418 ssdifidlprm 33429 mxidlprm 33441 qsdrngi 33466 1arithidom 33508 fldext2chn 33718 constrconj 33735 constrfin 33736 constrelextdg2 33737 zarcmplem 33871 afsval 34662 dffltz 42622 smfmullem3 46791 |
| Copyright terms: Public domain | W3C validator |