![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-7r | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-7r | ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | ad7antlr 739 | 1 ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: catass 17731 2sqmo 27496 tgbtwnconn1 28598 legso 28622 miriso 28693 footexALT 28741 footex 28744 opphl 28777 lnopp2hpgb 28786 f1otrg 28894 2ndresdju 32666 cyc3genpm 33155 cyc3conja 33160 rloccring 33257 isprmidlc 33455 ssdifidlprm 33466 mxidlprm 33478 qsdrngi 33503 1arithidom 33545 fldext2chn 33734 constrconj 33750 constrfin 33751 constrelextdg2 33752 zarcmplem 33842 afsval 34665 dffltz 42621 smfmullem3 46749 |
Copyright terms: Public domain | W3C validator |