MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-7r Structured version   Visualization version   GIF version

Theorem simp-7r 789
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-7r ((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)

Proof of Theorem simp-7r
StepHypRef Expression
1 id 22 . 2 (𝜓𝜓)
21ad7antlr 739 1 ((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  catass  17594  2sqmo  27376  tgbtwnconn1  28554  legso  28578  miriso  28649  footexALT  28697  footex  28700  opphl  28733  lnopp2hpgb  28742  f1otrg  28850  2ndresdju  32633  cyc3genpm  33128  cyc3conja  33133  rloccring  33244  isprmidlc  33419  ssdifidlprm  33430  mxidlprm  33442  qsdrngi  33467  1arithidom  33509  fldext2chn  33762  constrconj  33779  constrfin  33780  constrelextdg2  33781  zarcmplem  33915  afsval  34705  dffltz  42753  smfmullem3  46916  chnerlem1  47005
  Copyright terms: Public domain W3C validator