MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-7r Structured version   Visualization version   GIF version

Theorem simp-7r 790
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-7r ((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)

Proof of Theorem simp-7r
StepHypRef Expression
1 id 22 . 2 (𝜓𝜓)
21ad7antlr 739 1 ((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  catass  17729  2sqmo  27481  tgbtwnconn1  28583  legso  28607  miriso  28678  footexALT  28726  footex  28729  opphl  28762  lnopp2hpgb  28771  f1otrg  28879  2ndresdju  32659  cyc3genpm  33172  cyc3conja  33177  rloccring  33274  isprmidlc  33475  ssdifidlprm  33486  mxidlprm  33498  qsdrngi  33523  1arithidom  33565  fldext2chn  33769  constrconj  33786  constrfin  33787  constrelextdg2  33788  zarcmplem  33880  afsval  34686  dffltz  42644  smfmullem3  46808
  Copyright terms: Public domain W3C validator