![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-7r | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-7r | ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | ad7antlr 737 | 1 ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: catass 17669 2sqmo 27415 tgbtwnconn1 28451 legso 28475 miriso 28546 footexALT 28594 footex 28597 opphl 28630 lnopp2hpgb 28639 f1otrg 28747 2ndresdju 32516 cyc3genpm 32965 cyc3conja 32970 rloccring 33060 isprmidlc 33259 ssdifidlprm 33270 mxidlprm 33282 qsdrngi 33307 1arithidom 33349 zarcmplem 33613 afsval 34434 dffltz 42193 smfmullem3 46319 |
Copyright terms: Public domain | W3C validator |