| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-7r | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-7r | ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | ad7antlr 739 | 1 ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: catass 17594 2sqmo 27376 tgbtwnconn1 28554 legso 28578 miriso 28649 footexALT 28697 footex 28700 opphl 28733 lnopp2hpgb 28742 f1otrg 28850 2ndresdju 32633 cyc3genpm 33128 cyc3conja 33133 rloccring 33244 isprmidlc 33419 ssdifidlprm 33430 mxidlprm 33442 qsdrngi 33467 1arithidom 33509 fldext2chn 33762 constrconj 33779 constrfin 33780 constrelextdg2 33781 zarcmplem 33915 afsval 34705 dffltz 42753 smfmullem3 46916 chnerlem1 47005 |
| Copyright terms: Public domain | W3C validator |