| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-7r | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-7r | ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | ad7antlr 739 | 1 ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: catass 17654 2sqmo 27355 tgbtwnconn1 28509 legso 28533 miriso 28604 footexALT 28652 footex 28655 opphl 28688 lnopp2hpgb 28697 f1otrg 28805 2ndresdju 32580 cyc3genpm 33116 cyc3conja 33121 rloccring 33228 isprmidlc 33425 ssdifidlprm 33436 mxidlprm 33448 qsdrngi 33473 1arithidom 33515 fldext2chn 33725 constrconj 33742 constrfin 33743 constrelextdg2 33744 zarcmplem 33878 afsval 34669 dffltz 42629 smfmullem3 46798 |
| Copyright terms: Public domain | W3C validator |