MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-7r Structured version   Visualization version   GIF version

Theorem simp-7r 789
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-7r ((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)

Proof of Theorem simp-7r
StepHypRef Expression
1 id 22 . 2 (𝜓𝜓)
21ad7antlr 739 1 ((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  catass  17654  2sqmo  27355  tgbtwnconn1  28509  legso  28533  miriso  28604  footexALT  28652  footex  28655  opphl  28688  lnopp2hpgb  28697  f1otrg  28805  2ndresdju  32580  cyc3genpm  33116  cyc3conja  33121  rloccring  33228  isprmidlc  33425  ssdifidlprm  33436  mxidlprm  33448  qsdrngi  33473  1arithidom  33515  fldext2chn  33725  constrconj  33742  constrfin  33743  constrelextdg2  33744  zarcmplem  33878  afsval  34669  dffltz  42629  smfmullem3  46798
  Copyright terms: Public domain W3C validator