MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-7r Structured version   Visualization version   GIF version

Theorem simp-7r 789
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-7r ((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)

Proof of Theorem simp-7r
StepHypRef Expression
1 id 22 . 2 (𝜓𝜓)
21ad7antlr 739 1 ((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  catass  17647  2sqmo  27348  tgbtwnconn1  28502  legso  28526  miriso  28597  footexALT  28645  footex  28648  opphl  28681  lnopp2hpgb  28690  f1otrg  28798  2ndresdju  32573  cyc3genpm  33109  cyc3conja  33114  rloccring  33221  isprmidlc  33418  ssdifidlprm  33429  mxidlprm  33441  qsdrngi  33466  1arithidom  33508  fldext2chn  33718  constrconj  33735  constrfin  33736  constrelextdg2  33737  zarcmplem  33871  afsval  34662  dffltz  42622  smfmullem3  46791
  Copyright terms: Public domain W3C validator