MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-7r Structured version   Visualization version   GIF version

Theorem simp-7r 788
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-7r ((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)

Proof of Theorem simp-7r
StepHypRef Expression
1 id 22 . 2 (𝜓𝜓)
21ad7antlr 737 1 ((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  catass  17669  2sqmo  27415  tgbtwnconn1  28451  legso  28475  miriso  28546  footexALT  28594  footex  28597  opphl  28630  lnopp2hpgb  28639  f1otrg  28747  2ndresdju  32516  cyc3genpm  32965  cyc3conja  32970  rloccring  33060  isprmidlc  33259  ssdifidlprm  33270  mxidlprm  33282  qsdrngi  33307  1arithidom  33349  zarcmplem  33613  afsval  34434  dffltz  42193  smfmullem3  46319
  Copyright terms: Public domain W3C validator