MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catass Structured version   Visualization version   GIF version

Theorem catass 16818
Description: Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catcocl.b 𝐵 = (Base‘𝐶)
catcocl.h 𝐻 = (Hom ‘𝐶)
catcocl.o · = (comp‘𝐶)
catcocl.c (𝜑𝐶 ∈ Cat)
catcocl.x (𝜑𝑋𝐵)
catcocl.y (𝜑𝑌𝐵)
catcocl.z (𝜑𝑍𝐵)
catcocl.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
catcocl.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
catass.w (𝜑𝑊𝐵)
catass.g (𝜑𝐾 ∈ (𝑍𝐻𝑊))
Assertion
Ref Expression
catass (𝜑 → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)))

Proof of Theorem catass
Dummy variables 𝑓 𝑔 𝑘 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcocl.c . . 3 (𝜑𝐶 ∈ Cat)
2 catcocl.b . . . . 5 𝐵 = (Base‘𝐶)
3 catcocl.h . . . . 5 𝐻 = (Hom ‘𝐶)
4 catcocl.o . . . . 5 · = (comp‘𝐶)
52, 3, 4iscat 16804 . . . 4 (𝐶 ∈ Cat → (𝐶 ∈ Cat ↔ ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))))))
65ibi 259 . . 3 (𝐶 ∈ Cat → ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))
71, 6syl 17 . 2 (𝜑 → ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))
8 catcocl.x . . 3 (𝜑𝑋𝐵)
9 catcocl.y . . . . . 6 (𝜑𝑌𝐵)
109adantr 473 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑌𝐵)
11 catcocl.z . . . . . . 7 (𝜑𝑍𝐵)
1211ad2antrr 713 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑍𝐵)
13 catcocl.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
1413ad3antrrr 717 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑋𝐻𝑌))
15 simpllr 763 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑥 = 𝑋)
16 simplr 756 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌)
1715, 16oveq12d 6996 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1814, 17eleqtrrd 2869 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑥𝐻𝑦))
19 catcocl.g . . . . . . . . . 10 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
2019ad4antr 719 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑌𝐻𝑍))
21 simpllr 763 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝑦 = 𝑌)
22 simplr 756 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝑧 = 𝑍)
2321, 22oveq12d 6996 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (𝑦𝐻𝑧) = (𝑌𝐻𝑍))
2420, 23eleqtrrd 2869 . . . . . . . 8 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑦𝐻𝑧))
25 catass.w . . . . . . . . . . 11 (𝜑𝑊𝐵)
2625ad5antr 721 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑊𝐵)
27 catass.g . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (𝑍𝐻𝑊))
2827ad6antr 723 . . . . . . . . . . . 12 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝐾 ∈ (𝑍𝐻𝑊))
29 simp-4r 771 . . . . . . . . . . . . 13 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝑧 = 𝑍)
30 simpr 477 . . . . . . . . . . . . 13 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝑤 = 𝑊)
3129, 30oveq12d 6996 . . . . . . . . . . . 12 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → (𝑧𝐻𝑤) = (𝑍𝐻𝑊))
3228, 31eleqtrrd 2869 . . . . . . . . . . 11 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝐾 ∈ (𝑧𝐻𝑤))
33 simp-7r 777 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑥 = 𝑋)
34 simp-6r 775 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑦 = 𝑌)
3533, 34opeq12d 4686 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
36 simplr 756 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑤 = 𝑊)
3735, 36oveq12d 6996 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑥, 𝑦· 𝑤) = (⟨𝑋, 𝑌· 𝑊))
38 simp-5r 773 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑧 = 𝑍)
3934, 38opeq12d 4686 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨𝑦, 𝑧⟩ = ⟨𝑌, 𝑍⟩)
4039, 36oveq12d 6996 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑦, 𝑧· 𝑤) = (⟨𝑌, 𝑍· 𝑊))
41 simpr 477 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾)
42 simpllr 763 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑔 = 𝐺)
4340, 41, 42oveq123d 6999 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (𝑘(⟨𝑦, 𝑧· 𝑤)𝑔) = (𝐾(⟨𝑌, 𝑍· 𝑊)𝐺))
44 simp-4r 771 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑓 = 𝐹)
4537, 43, 44oveq123d 6999 . . . . . . . . . . . 12 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹))
4633, 38opeq12d 4686 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨𝑥, 𝑧⟩ = ⟨𝑋, 𝑍⟩)
4746, 36oveq12d 6996 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑥, 𝑧· 𝑤) = (⟨𝑋, 𝑍· 𝑊))
4835, 38oveq12d 6996 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑋, 𝑌· 𝑍))
4948, 42, 44oveq123d 6999 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
5047, 41, 49oveq123d 6999 . . . . . . . . . . . 12 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)))
5145, 50eqeq12d 2793 . . . . . . . . . . 11 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) ↔ ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5232, 51rspcdv 3538 . . . . . . . . . 10 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → (∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5326, 52rspcimdv 3536 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5453adantld 483 . . . . . . . 8 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5524, 54rspcimdv 3536 . . . . . . 7 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5618, 55rspcimdv 3536 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5712, 56rspcimdv 3536 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (∀𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5810, 57rspcimdv 3536 . . . 4 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5958adantld 483 . . 3 ((𝜑𝑥 = 𝑋) → ((∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
608, 59rspcimdv 3536 . 2 (𝜑 → (∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
617, 60mpd 15 1 (𝜑 → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wral 3088  wrex 3089  cop 4448  cfv 6190  (class class class)co 6978  Basecbs 16342  Hom chom 16435  compcco 16436  Catccat 16796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750  ax-nul 5068
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3684  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-br 4931  df-iota 6154  df-fv 6198  df-ov 6981  df-cat 16800
This theorem is referenced by:  oppccatid  16850  sectcan  16886  sectco  16887  sectmon  16913  monsect  16914  rcaninv  16925  subccatid  16977  fuccocl  17095  fucass  17099  invfuc  17105  arwass  17195  xpccatid  17299  evlfcllem  17332  hofcllem  17369
  Copyright terms: Public domain W3C validator