MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catass Structured version   Visualization version   GIF version

Theorem catass 17744
Description: Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catcocl.b 𝐵 = (Base‘𝐶)
catcocl.h 𝐻 = (Hom ‘𝐶)
catcocl.o · = (comp‘𝐶)
catcocl.c (𝜑𝐶 ∈ Cat)
catcocl.x (𝜑𝑋𝐵)
catcocl.y (𝜑𝑌𝐵)
catcocl.z (𝜑𝑍𝐵)
catcocl.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
catcocl.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
catass.w (𝜑𝑊𝐵)
catass.g (𝜑𝐾 ∈ (𝑍𝐻𝑊))
Assertion
Ref Expression
catass (𝜑 → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)))

Proof of Theorem catass
Dummy variables 𝑓 𝑔 𝑘 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcocl.c . . 3 (𝜑𝐶 ∈ Cat)
2 catcocl.b . . . . 5 𝐵 = (Base‘𝐶)
3 catcocl.h . . . . 5 𝐻 = (Hom ‘𝐶)
4 catcocl.o . . . . 5 · = (comp‘𝐶)
52, 3, 4iscat 17730 . . . 4 (𝐶 ∈ Cat → (𝐶 ∈ Cat ↔ ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))))))
65ibi 267 . . 3 (𝐶 ∈ Cat → ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))
71, 6syl 17 . 2 (𝜑 → ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))
8 catcocl.x . . 3 (𝜑𝑋𝐵)
9 catcocl.y . . . . . 6 (𝜑𝑌𝐵)
109adantr 480 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑌𝐵)
11 catcocl.z . . . . . . 7 (𝜑𝑍𝐵)
1211ad2antrr 725 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑍𝐵)
13 catcocl.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
1413ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑋𝐻𝑌))
15 simpllr 775 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑥 = 𝑋)
16 simplr 768 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌)
1715, 16oveq12d 7466 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1814, 17eleqtrrd 2847 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑥𝐻𝑦))
19 catcocl.g . . . . . . . . . 10 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
2019ad4antr 731 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑌𝐻𝑍))
21 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝑦 = 𝑌)
22 simplr 768 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝑧 = 𝑍)
2321, 22oveq12d 7466 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (𝑦𝐻𝑧) = (𝑌𝐻𝑍))
2420, 23eleqtrrd 2847 . . . . . . . 8 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑦𝐻𝑧))
25 catass.w . . . . . . . . . . 11 (𝜑𝑊𝐵)
2625ad5antr 733 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑊𝐵)
27 catass.g . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (𝑍𝐻𝑊))
2827ad6antr 735 . . . . . . . . . . . 12 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝐾 ∈ (𝑍𝐻𝑊))
29 simp-4r 783 . . . . . . . . . . . . 13 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝑧 = 𝑍)
30 simpr 484 . . . . . . . . . . . . 13 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝑤 = 𝑊)
3129, 30oveq12d 7466 . . . . . . . . . . . 12 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → (𝑧𝐻𝑤) = (𝑍𝐻𝑊))
3228, 31eleqtrrd 2847 . . . . . . . . . . 11 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝐾 ∈ (𝑧𝐻𝑤))
33 simp-7r 789 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑥 = 𝑋)
34 simp-6r 787 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑦 = 𝑌)
3533, 34opeq12d 4905 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
36 simplr 768 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑤 = 𝑊)
3735, 36oveq12d 7466 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑥, 𝑦· 𝑤) = (⟨𝑋, 𝑌· 𝑊))
38 simp-5r 785 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑧 = 𝑍)
3934, 38opeq12d 4905 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨𝑦, 𝑧⟩ = ⟨𝑌, 𝑍⟩)
4039, 36oveq12d 7466 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑦, 𝑧· 𝑤) = (⟨𝑌, 𝑍· 𝑊))
41 simpr 484 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾)
42 simpllr 775 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑔 = 𝐺)
4340, 41, 42oveq123d 7469 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (𝑘(⟨𝑦, 𝑧· 𝑤)𝑔) = (𝐾(⟨𝑌, 𝑍· 𝑊)𝐺))
44 simp-4r 783 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑓 = 𝐹)
4537, 43, 44oveq123d 7469 . . . . . . . . . . . 12 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹))
4633, 38opeq12d 4905 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨𝑥, 𝑧⟩ = ⟨𝑋, 𝑍⟩)
4746, 36oveq12d 7466 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑥, 𝑧· 𝑤) = (⟨𝑋, 𝑍· 𝑊))
4835, 38oveq12d 7466 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑋, 𝑌· 𝑍))
4948, 42, 44oveq123d 7469 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
5047, 41, 49oveq123d 7469 . . . . . . . . . . . 12 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)))
5145, 50eqeq12d 2756 . . . . . . . . . . 11 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) ↔ ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5232, 51rspcdv 3627 . . . . . . . . . 10 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → (∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5326, 52rspcimdv 3625 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5453adantld 490 . . . . . . . 8 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5524, 54rspcimdv 3625 . . . . . . 7 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5618, 55rspcimdv 3625 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5712, 56rspcimdv 3625 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (∀𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5810, 57rspcimdv 3625 . . . 4 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5958adantld 490 . . 3 ((𝜑𝑥 = 𝑋) → ((∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
608, 59rspcimdv 3625 . 2 (𝜑 → (∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
617, 60mpd 15 1 (𝜑 → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cop 4654  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-cat 17726
This theorem is referenced by:  oppccatid  17779  sectcan  17816  sectco  17817  sectmon  17843  monsect  17844  rcaninv  17855  subccatid  17910  fuccocl  18034  fucass  18038  invfuc  18044  arwass  18141  xpccatid  18257  evlfcllem  18291  hofcllem  18328  bj-endmnd  37284  endmndlem  48682
  Copyright terms: Public domain W3C validator