MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catass Structured version   Visualization version   GIF version

Theorem catass 17189
Description: Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catcocl.b 𝐵 = (Base‘𝐶)
catcocl.h 𝐻 = (Hom ‘𝐶)
catcocl.o · = (comp‘𝐶)
catcocl.c (𝜑𝐶 ∈ Cat)
catcocl.x (𝜑𝑋𝐵)
catcocl.y (𝜑𝑌𝐵)
catcocl.z (𝜑𝑍𝐵)
catcocl.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
catcocl.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
catass.w (𝜑𝑊𝐵)
catass.g (𝜑𝐾 ∈ (𝑍𝐻𝑊))
Assertion
Ref Expression
catass (𝜑 → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)))

Proof of Theorem catass
Dummy variables 𝑓 𝑔 𝑘 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcocl.c . . 3 (𝜑𝐶 ∈ Cat)
2 catcocl.b . . . . 5 𝐵 = (Base‘𝐶)
3 catcocl.h . . . . 5 𝐻 = (Hom ‘𝐶)
4 catcocl.o . . . . 5 · = (comp‘𝐶)
52, 3, 4iscat 17175 . . . 4 (𝐶 ∈ Cat → (𝐶 ∈ Cat ↔ ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))))))
65ibi 270 . . 3 (𝐶 ∈ Cat → ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))
71, 6syl 17 . 2 (𝜑 → ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))
8 catcocl.x . . 3 (𝜑𝑋𝐵)
9 catcocl.y . . . . . 6 (𝜑𝑌𝐵)
109adantr 484 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑌𝐵)
11 catcocl.z . . . . . . 7 (𝜑𝑍𝐵)
1211ad2antrr 726 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑍𝐵)
13 catcocl.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
1413ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑋𝐻𝑌))
15 simpllr 776 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑥 = 𝑋)
16 simplr 769 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌)
1715, 16oveq12d 7231 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1814, 17eleqtrrd 2841 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑥𝐻𝑦))
19 catcocl.g . . . . . . . . . 10 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
2019ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑌𝐻𝑍))
21 simpllr 776 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝑦 = 𝑌)
22 simplr 769 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝑧 = 𝑍)
2321, 22oveq12d 7231 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (𝑦𝐻𝑧) = (𝑌𝐻𝑍))
2420, 23eleqtrrd 2841 . . . . . . . 8 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑦𝐻𝑧))
25 catass.w . . . . . . . . . . 11 (𝜑𝑊𝐵)
2625ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑊𝐵)
27 catass.g . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (𝑍𝐻𝑊))
2827ad6antr 736 . . . . . . . . . . . 12 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝐾 ∈ (𝑍𝐻𝑊))
29 simp-4r 784 . . . . . . . . . . . . 13 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝑧 = 𝑍)
30 simpr 488 . . . . . . . . . . . . 13 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝑤 = 𝑊)
3129, 30oveq12d 7231 . . . . . . . . . . . 12 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → (𝑧𝐻𝑤) = (𝑍𝐻𝑊))
3228, 31eleqtrrd 2841 . . . . . . . . . . 11 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝐾 ∈ (𝑧𝐻𝑤))
33 simp-7r 790 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑥 = 𝑋)
34 simp-6r 788 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑦 = 𝑌)
3533, 34opeq12d 4792 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
36 simplr 769 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑤 = 𝑊)
3735, 36oveq12d 7231 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑥, 𝑦· 𝑤) = (⟨𝑋, 𝑌· 𝑊))
38 simp-5r 786 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑧 = 𝑍)
3934, 38opeq12d 4792 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨𝑦, 𝑧⟩ = ⟨𝑌, 𝑍⟩)
4039, 36oveq12d 7231 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑦, 𝑧· 𝑤) = (⟨𝑌, 𝑍· 𝑊))
41 simpr 488 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾)
42 simpllr 776 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑔 = 𝐺)
4340, 41, 42oveq123d 7234 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (𝑘(⟨𝑦, 𝑧· 𝑤)𝑔) = (𝐾(⟨𝑌, 𝑍· 𝑊)𝐺))
44 simp-4r 784 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑓 = 𝐹)
4537, 43, 44oveq123d 7234 . . . . . . . . . . . 12 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹))
4633, 38opeq12d 4792 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨𝑥, 𝑧⟩ = ⟨𝑋, 𝑍⟩)
4746, 36oveq12d 7231 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑥, 𝑧· 𝑤) = (⟨𝑋, 𝑍· 𝑊))
4835, 38oveq12d 7231 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑋, 𝑌· 𝑍))
4948, 42, 44oveq123d 7234 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
5047, 41, 49oveq123d 7234 . . . . . . . . . . . 12 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)))
5145, 50eqeq12d 2753 . . . . . . . . . . 11 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) ↔ ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5232, 51rspcdv 3529 . . . . . . . . . 10 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → (∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5326, 52rspcimdv 3527 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5453adantld 494 . . . . . . . 8 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5524, 54rspcimdv 3527 . . . . . . 7 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5618, 55rspcimdv 3527 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5712, 56rspcimdv 3527 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (∀𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5810, 57rspcimdv 3527 . . . 4 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5958adantld 494 . . 3 ((𝜑𝑥 = 𝑋) → ((∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
608, 59rspcimdv 3527 . 2 (𝜑 → (∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
617, 60mpd 15 1 (𝜑 → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  cop 4547  cfv 6380  (class class class)co 7213  Basecbs 16760  Hom chom 16813  compcco 16814  Catccat 17167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-nul 5199
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-iota 6338  df-fv 6388  df-ov 7216  df-cat 17171
This theorem is referenced by:  oppccatid  17223  sectcan  17260  sectco  17261  sectmon  17287  monsect  17288  rcaninv  17299  subccatid  17352  fuccocl  17473  fucass  17477  invfuc  17483  arwass  17580  xpccatid  17695  evlfcllem  17729  hofcllem  17766  bj-endmnd  35223  endmndlem  45969
  Copyright terms: Public domain W3C validator