MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catass Structured version   Visualization version   GIF version

Theorem catass 17731
Description: Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catcocl.b 𝐵 = (Base‘𝐶)
catcocl.h 𝐻 = (Hom ‘𝐶)
catcocl.o · = (comp‘𝐶)
catcocl.c (𝜑𝐶 ∈ Cat)
catcocl.x (𝜑𝑋𝐵)
catcocl.y (𝜑𝑌𝐵)
catcocl.z (𝜑𝑍𝐵)
catcocl.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
catcocl.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
catass.w (𝜑𝑊𝐵)
catass.g (𝜑𝐾 ∈ (𝑍𝐻𝑊))
Assertion
Ref Expression
catass (𝜑 → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)))

Proof of Theorem catass
Dummy variables 𝑓 𝑔 𝑘 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcocl.c . . 3 (𝜑𝐶 ∈ Cat)
2 catcocl.b . . . . 5 𝐵 = (Base‘𝐶)
3 catcocl.h . . . . 5 𝐻 = (Hom ‘𝐶)
4 catcocl.o . . . . 5 · = (comp‘𝐶)
52, 3, 4iscat 17717 . . . 4 (𝐶 ∈ Cat → (𝐶 ∈ Cat ↔ ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))))))
65ibi 267 . . 3 (𝐶 ∈ Cat → ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))
71, 6syl 17 . 2 (𝜑 → ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))
8 catcocl.x . . 3 (𝜑𝑋𝐵)
9 catcocl.y . . . . . 6 (𝜑𝑌𝐵)
109adantr 480 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑌𝐵)
11 catcocl.z . . . . . . 7 (𝜑𝑍𝐵)
1211ad2antrr 726 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑍𝐵)
13 catcocl.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
1413ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑋𝐻𝑌))
15 simpllr 776 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑥 = 𝑋)
16 simplr 769 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌)
1715, 16oveq12d 7449 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1814, 17eleqtrrd 2842 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑥𝐻𝑦))
19 catcocl.g . . . . . . . . . 10 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
2019ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑌𝐻𝑍))
21 simpllr 776 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝑦 = 𝑌)
22 simplr 769 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝑧 = 𝑍)
2321, 22oveq12d 7449 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (𝑦𝐻𝑧) = (𝑌𝐻𝑍))
2420, 23eleqtrrd 2842 . . . . . . . 8 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑦𝐻𝑧))
25 catass.w . . . . . . . . . . 11 (𝜑𝑊𝐵)
2625ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑊𝐵)
27 catass.g . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (𝑍𝐻𝑊))
2827ad6antr 736 . . . . . . . . . . . 12 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝐾 ∈ (𝑍𝐻𝑊))
29 simp-4r 784 . . . . . . . . . . . . 13 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝑧 = 𝑍)
30 simpr 484 . . . . . . . . . . . . 13 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝑤 = 𝑊)
3129, 30oveq12d 7449 . . . . . . . . . . . 12 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → (𝑧𝐻𝑤) = (𝑍𝐻𝑊))
3228, 31eleqtrrd 2842 . . . . . . . . . . 11 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → 𝐾 ∈ (𝑧𝐻𝑤))
33 simp-7r 790 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑥 = 𝑋)
34 simp-6r 788 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑦 = 𝑌)
3533, 34opeq12d 4886 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
36 simplr 769 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑤 = 𝑊)
3735, 36oveq12d 7449 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑥, 𝑦· 𝑤) = (⟨𝑋, 𝑌· 𝑊))
38 simp-5r 786 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑧 = 𝑍)
3934, 38opeq12d 4886 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨𝑦, 𝑧⟩ = ⟨𝑌, 𝑍⟩)
4039, 36oveq12d 7449 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑦, 𝑧· 𝑤) = (⟨𝑌, 𝑍· 𝑊))
41 simpr 484 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾)
42 simpllr 776 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑔 = 𝐺)
4340, 41, 42oveq123d 7452 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (𝑘(⟨𝑦, 𝑧· 𝑤)𝑔) = (𝐾(⟨𝑌, 𝑍· 𝑊)𝐺))
44 simp-4r 784 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑓 = 𝐹)
4537, 43, 44oveq123d 7452 . . . . . . . . . . . 12 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹))
4633, 38opeq12d 4886 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨𝑥, 𝑧⟩ = ⟨𝑋, 𝑍⟩)
4746, 36oveq12d 7449 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑥, 𝑧· 𝑤) = (⟨𝑋, 𝑍· 𝑊))
4835, 38oveq12d 7449 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑋, 𝑌· 𝑍))
4948, 42, 44oveq123d 7452 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
5047, 41, 49oveq123d 7452 . . . . . . . . . . . 12 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)))
5145, 50eqeq12d 2751 . . . . . . . . . . 11 ((((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) ↔ ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5232, 51rspcdv 3614 . . . . . . . . . 10 (((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) ∧ 𝑤 = 𝑊) → (∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5326, 52rspcimdv 3612 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5453adantld 490 . . . . . . . 8 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5524, 54rspcimdv 3612 . . . . . . 7 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5618, 55rspcimdv 3612 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5712, 56rspcimdv 3612 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (∀𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5810, 57rspcimdv 3612 . . . 4 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
5958adantld 490 . . 3 ((𝜑𝑥 = 𝑋) → ((∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
608, 59rspcimdv 3612 . 2 (𝜑 → (∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))) → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
617, 60mpd 15 1 (𝜑 → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cop 4637  cfv 6563  (class class class)co 7431  Basecbs 17245  Hom chom 17309  compcco 17310  Catccat 17709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-cat 17713
This theorem is referenced by:  oppccatid  17766  sectcan  17803  sectco  17804  sectmon  17830  monsect  17831  rcaninv  17842  subccatid  17897  fuccocl  18021  fucass  18025  invfuc  18031  arwass  18128  xpccatid  18244  evlfcllem  18278  hofcllem  18315  bj-endmnd  37301  endmndlem  48804  upeu2lem  48808  upciclem2  48813
  Copyright terms: Public domain W3C validator