MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconn1 Structured version   Visualization version   GIF version

Theorem tgbtwnconn1 26638
Description: Connectivity law for betweenness. Theorem 5.1 of [Schwabhauser] p. 39-41. In earlier presentations of Tarski's axioms, this theorem appeared as an additional axiom. It was derived from the other axioms by Gupta, 1965. (Contributed by Thierry Arnoux, 30-Apr-2019.)
Hypotheses
Ref Expression
tgbtwnconn1.p 𝑃 = (Base‘𝐺)
tgbtwnconn1.i 𝐼 = (Itv‘𝐺)
tgbtwnconn1.g (𝜑𝐺 ∈ TarskiG)
tgbtwnconn1.a (𝜑𝐴𝑃)
tgbtwnconn1.b (𝜑𝐵𝑃)
tgbtwnconn1.c (𝜑𝐶𝑃)
tgbtwnconn1.d (𝜑𝐷𝑃)
tgbtwnconn1.1 (𝜑𝐴𝐵)
tgbtwnconn1.2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnconn1.3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnconn1 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))

Proof of Theorem tgbtwnconn1
Dummy variables 𝑒 𝑓 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 776 . . . . . . . 8 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶)))
21simpld 498 . . . . . . 7 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐷 ∈ (𝐴𝐼𝑒))
32adantr 484 . . . . . 6 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → 𝐷 ∈ (𝐴𝐼𝑒))
4 simpr 488 . . . . . . 7 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → 𝐶 = 𝑒)
54oveq2d 7218 . . . . . 6 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → (𝐴𝐼𝐶) = (𝐴𝐼𝑒))
63, 5eleqtrrd 2837 . . . . 5 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → 𝐷 ∈ (𝐴𝐼𝐶))
76olcd 874 . . . 4 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
8 simprl 771 . . . . . . 7 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐶 ∈ (𝐴𝐼𝑓))
98adantr 484 . . . . . 6 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → 𝐶 ∈ (𝐴𝐼𝑓))
10 simpr 488 . . . . . . 7 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → 𝐷 = 𝑓)
1110oveq2d 7218 . . . . . 6 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → (𝐴𝐼𝐷) = (𝐴𝐼𝑓))
129, 11eleqtrrd 2837 . . . . 5 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → 𝐶 ∈ (𝐴𝐼𝐷))
1312orcd 873 . . . 4 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
14 df-ne 2936 . . . . . 6 (𝐶𝑒 ↔ ¬ 𝐶 = 𝑒)
15 tgbtwnconn1.p . . . . . . . . . . 11 𝑃 = (Base‘𝐺)
16 tgbtwnconn1.i . . . . . . . . . . 11 𝐼 = (Itv‘𝐺)
17 tgbtwnconn1.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ TarskiG)
1817ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐺 ∈ TarskiG)
1918ad7antr 738 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐺 ∈ TarskiG)
20 tgbtwnconn1.a . . . . . . . . . . . . 13 (𝜑𝐴𝑃)
2120ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐴𝑃)
2221ad7antr 738 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐴𝑃)
23 tgbtwnconn1.b . . . . . . . . . . . . 13 (𝜑𝐵𝑃)
2423ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐵𝑃)
2524ad7antr 738 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐵𝑃)
26 tgbtwnconn1.c . . . . . . . . . . . . 13 (𝜑𝐶𝑃)
2726ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐶𝑃)
2827ad7antr 738 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐶𝑃)
29 tgbtwnconn1.d . . . . . . . . . . . . 13 (𝜑𝐷𝑃)
3029ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐷𝑃)
3130ad7antr 738 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐷𝑃)
32 simp-11l 797 . . . . . . . . . . . 12 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝜑)
33 tgbtwnconn1.1 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
3432, 33syl 17 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐴𝐵)
35 tgbtwnconn1.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
3632, 35syl 17 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐵 ∈ (𝐴𝐼𝐶))
37 tgbtwnconn1.3 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
3832, 37syl 17 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐵 ∈ (𝐴𝐼𝐷))
39 eqid 2734 . . . . . . . . . . 11 (dist‘𝐺) = (dist‘𝐺)
40 simp-4r 784 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝑒𝑃)
4140ad7antr 738 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑒𝑃)
42 simplr 769 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝑓𝑃)
4342ad7antr 738 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑓𝑃)
44 simp-6r 788 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑃)
45 simp-4r 784 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑗𝑃)
462ad7antr 738 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐷 ∈ (𝐴𝐼𝑒))
478ad7antr 738 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐶 ∈ (𝐴𝐼𝑓))
48 simp-5r 786 . . . . . . . . . . . 12 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶)))
4948simpld 498 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑒 ∈ (𝐴𝐼))
50 simpllr 776 . . . . . . . . . . . 12 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷)))
5150simpld 498 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑓 ∈ (𝐴𝐼𝑗))
521simprd 499 . . . . . . . . . . . . 13 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))
5352ad7antr 738 . . . . . . . . . . . 12 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))
5415, 39, 16, 19, 31, 41, 31, 28, 53tgcgrcomlr 26543 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑒(dist‘𝐺)𝐷) = (𝐶(dist‘𝐺)𝐷))
55 simprr 773 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))
5655ad7antr 738 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))
5748simprd 499 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))
5850simprd 499 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))
59 simplr 769 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑥𝑃)
60 simprl 771 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑥 ∈ (𝐶𝐼𝑒))
61 simprr 773 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑥 ∈ (𝐷𝐼𝑓))
62 simp-7r 790 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐶𝑒)
6315, 16, 19, 22, 25, 28, 31, 34, 36, 38, 39, 41, 43, 44, 45, 46, 47, 49, 51, 54, 56, 57, 58, 59, 60, 61, 62tgbtwnconn1lem3 26637 . . . . . . . . . 10 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐷 = 𝑓)
6415, 39, 16, 18, 21, 27, 42, 8tgbtwncom 26551 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐶 ∈ (𝑓𝐼𝐴))
6515, 39, 16, 18, 21, 30, 40, 2tgbtwncom 26551 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐷 ∈ (𝑒𝐼𝐴))
6615, 39, 16, 18, 42, 40, 21, 27, 30, 64, 65axtgpasch 26530 . . . . . . . . . . 11 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓)))
6766ad5antr 734 . . . . . . . . . 10 ((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓)))
6863, 67r19.29a 3201 . . . . . . . . 9 ((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) → 𝐷 = 𝑓)
6915, 39, 16, 18, 21, 42, 24, 30axtgsegcon 26527 . . . . . . . . . 10 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → ∃𝑗𝑃 (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷)))
7069ad3antrrr 730 . . . . . . . . 9 ((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) → ∃𝑗𝑃 (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷)))
7168, 70r19.29a 3201 . . . . . . . 8 ((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) → 𝐷 = 𝑓)
7215, 39, 16, 18, 21, 40, 24, 27axtgsegcon 26527 . . . . . . . . 9 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → ∃𝑃 (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶)))
7372adantr 484 . . . . . . . 8 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) → ∃𝑃 (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶)))
7471, 73r19.29a 3201 . . . . . . 7 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) → 𝐷 = 𝑓)
7574ex 416 . . . . . 6 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐶𝑒𝐷 = 𝑓))
7614, 75syl5bir 246 . . . . 5 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (¬ 𝐶 = 𝑒𝐷 = 𝑓))
7776orrd 863 . . . 4 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐶 = 𝑒𝐷 = 𝑓))
787, 13, 77mpjaodan 959 . . 3 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
7915, 39, 16, 17, 20, 26, 26, 29axtgsegcon 26527 . . . 4 (𝜑 → ∃𝑓𝑃 (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷)))
8079ad2antrr 726 . . 3 (((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) → ∃𝑓𝑃 (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷)))
8178, 80r19.29a 3201 . 2 (((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
8215, 39, 16, 17, 20, 29, 29, 26axtgsegcon 26527 . 2 (𝜑 → ∃𝑒𝑃 (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶)))
8381, 82r19.29a 3201 1 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2935  wrex 3055  cfv 6369  (class class class)co 7202  Basecbs 16684  distcds 16776  TarskiGcstrkg 26493  Itvcitv 26499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-concat 14109  df-s1 14136  df-s2 14396  df-s3 14397  df-trkgc 26511  df-trkgb 26512  df-trkgcb 26513  df-trkg 26516  df-cgrg 26574
This theorem is referenced by:  tgbtwnconn2  26639  tgbtwnconnln1  26643  hltr  26673  hlbtwn  26674
  Copyright terms: Public domain W3C validator