MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconn1 Structured version   Visualization version   GIF version

Theorem tgbtwnconn1 28601
Description: Connectivity law for betweenness. Theorem 5.1 of [Schwabhauser] p. 39-41. In earlier presentations of Tarski's axioms, this theorem appeared as an additional axiom. It was derived from the other axioms by Gupta, 1965. (Contributed by Thierry Arnoux, 30-Apr-2019.)
Hypotheses
Ref Expression
tgbtwnconn1.p 𝑃 = (Base‘𝐺)
tgbtwnconn1.i 𝐼 = (Itv‘𝐺)
tgbtwnconn1.g (𝜑𝐺 ∈ TarskiG)
tgbtwnconn1.a (𝜑𝐴𝑃)
tgbtwnconn1.b (𝜑𝐵𝑃)
tgbtwnconn1.c (𝜑𝐶𝑃)
tgbtwnconn1.d (𝜑𝐷𝑃)
tgbtwnconn1.1 (𝜑𝐴𝐵)
tgbtwnconn1.2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnconn1.3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnconn1 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))

Proof of Theorem tgbtwnconn1
Dummy variables 𝑒 𝑓 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 775 . . . . . . . 8 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶)))
21simpld 494 . . . . . . 7 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐷 ∈ (𝐴𝐼𝑒))
32adantr 480 . . . . . 6 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → 𝐷 ∈ (𝐴𝐼𝑒))
4 simpr 484 . . . . . . 7 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → 𝐶 = 𝑒)
54oveq2d 7464 . . . . . 6 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → (𝐴𝐼𝐶) = (𝐴𝐼𝑒))
63, 5eleqtrrd 2847 . . . . 5 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → 𝐷 ∈ (𝐴𝐼𝐶))
76olcd 873 . . . 4 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
8 simprl 770 . . . . . . 7 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐶 ∈ (𝐴𝐼𝑓))
98adantr 480 . . . . . 6 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → 𝐶 ∈ (𝐴𝐼𝑓))
10 simpr 484 . . . . . . 7 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → 𝐷 = 𝑓)
1110oveq2d 7464 . . . . . 6 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → (𝐴𝐼𝐷) = (𝐴𝐼𝑓))
129, 11eleqtrrd 2847 . . . . 5 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → 𝐶 ∈ (𝐴𝐼𝐷))
1312orcd 872 . . . 4 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
14 df-ne 2947 . . . . . 6 (𝐶𝑒 ↔ ¬ 𝐶 = 𝑒)
15 tgbtwnconn1.p . . . . . . . . . . 11 𝑃 = (Base‘𝐺)
16 tgbtwnconn1.i . . . . . . . . . . 11 𝐼 = (Itv‘𝐺)
17 tgbtwnconn1.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ TarskiG)
1817ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐺 ∈ TarskiG)
1918ad7antr 737 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐺 ∈ TarskiG)
20 tgbtwnconn1.a . . . . . . . . . . . . 13 (𝜑𝐴𝑃)
2120ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐴𝑃)
2221ad7antr 737 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐴𝑃)
23 tgbtwnconn1.b . . . . . . . . . . . . 13 (𝜑𝐵𝑃)
2423ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐵𝑃)
2524ad7antr 737 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐵𝑃)
26 tgbtwnconn1.c . . . . . . . . . . . . 13 (𝜑𝐶𝑃)
2726ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐶𝑃)
2827ad7antr 737 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐶𝑃)
29 tgbtwnconn1.d . . . . . . . . . . . . 13 (𝜑𝐷𝑃)
3029ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐷𝑃)
3130ad7antr 737 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐷𝑃)
32 simp-11l 796 . . . . . . . . . . . 12 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝜑)
33 tgbtwnconn1.1 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
3432, 33syl 17 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐴𝐵)
35 tgbtwnconn1.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
3632, 35syl 17 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐵 ∈ (𝐴𝐼𝐶))
37 tgbtwnconn1.3 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
3832, 37syl 17 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐵 ∈ (𝐴𝐼𝐷))
39 eqid 2740 . . . . . . . . . . 11 (dist‘𝐺) = (dist‘𝐺)
40 simp-4r 783 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝑒𝑃)
4140ad7antr 737 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑒𝑃)
42 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝑓𝑃)
4342ad7antr 737 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑓𝑃)
44 simp-6r 787 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑃)
45 simp-4r 783 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑗𝑃)
462ad7antr 737 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐷 ∈ (𝐴𝐼𝑒))
478ad7antr 737 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐶 ∈ (𝐴𝐼𝑓))
48 simp-5r 785 . . . . . . . . . . . 12 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶)))
4948simpld 494 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑒 ∈ (𝐴𝐼))
50 simpllr 775 . . . . . . . . . . . 12 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷)))
5150simpld 494 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑓 ∈ (𝐴𝐼𝑗))
521simprd 495 . . . . . . . . . . . . 13 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))
5352ad7antr 737 . . . . . . . . . . . 12 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))
5415, 39, 16, 19, 31, 41, 31, 28, 53tgcgrcomlr 28506 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑒(dist‘𝐺)𝐷) = (𝐶(dist‘𝐺)𝐷))
55 simprr 772 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))
5655ad7antr 737 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))
5748simprd 495 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))
5850simprd 495 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))
59 simplr 768 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑥𝑃)
60 simprl 770 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑥 ∈ (𝐶𝐼𝑒))
61 simprr 772 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑥 ∈ (𝐷𝐼𝑓))
62 simp-7r 789 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐶𝑒)
6315, 16, 19, 22, 25, 28, 31, 34, 36, 38, 39, 41, 43, 44, 45, 46, 47, 49, 51, 54, 56, 57, 58, 59, 60, 61, 62tgbtwnconn1lem3 28600 . . . . . . . . . 10 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐷 = 𝑓)
6415, 39, 16, 18, 21, 27, 42, 8tgbtwncom 28514 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐶 ∈ (𝑓𝐼𝐴))
6515, 39, 16, 18, 21, 30, 40, 2tgbtwncom 28514 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐷 ∈ (𝑒𝐼𝐴))
6615, 39, 16, 18, 42, 40, 21, 27, 30, 64, 65axtgpasch 28493 . . . . . . . . . . 11 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓)))
6766ad5antr 733 . . . . . . . . . 10 ((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓)))
6863, 67r19.29a 3168 . . . . . . . . 9 ((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) → 𝐷 = 𝑓)
6915, 39, 16, 18, 21, 42, 24, 30axtgsegcon 28490 . . . . . . . . . 10 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → ∃𝑗𝑃 (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷)))
7069ad3antrrr 729 . . . . . . . . 9 ((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) → ∃𝑗𝑃 (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷)))
7168, 70r19.29a 3168 . . . . . . . 8 ((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) → 𝐷 = 𝑓)
7215, 39, 16, 18, 21, 40, 24, 27axtgsegcon 28490 . . . . . . . . 9 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → ∃𝑃 (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶)))
7372adantr 480 . . . . . . . 8 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) → ∃𝑃 (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶)))
7471, 73r19.29a 3168 . . . . . . 7 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) → 𝐷 = 𝑓)
7574ex 412 . . . . . 6 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐶𝑒𝐷 = 𝑓))
7614, 75biimtrrid 243 . . . . 5 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (¬ 𝐶 = 𝑒𝐷 = 𝑓))
7776orrd 862 . . . 4 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐶 = 𝑒𝐷 = 𝑓))
787, 13, 77mpjaodan 959 . . 3 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
7915, 39, 16, 17, 20, 26, 26, 29axtgsegcon 28490 . . . 4 (𝜑 → ∃𝑓𝑃 (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷)))
8079ad2antrr 725 . . 3 (((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) → ∃𝑓𝑃 (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷)))
8178, 80r19.29a 3168 . 2 (((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
8215, 39, 16, 17, 20, 29, 29, 26axtgsegcon 28490 . 2 (𝜑 → ∃𝑒𝑃 (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶)))
8381, 82r19.29a 3168 1 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cfv 6573  (class class class)co 7448  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479  df-cgrg 28537
This theorem is referenced by:  tgbtwnconn2  28602  tgbtwnconnln1  28606  hltr  28636  hlbtwn  28637
  Copyright terms: Public domain W3C validator