Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg28 Structured version   Visualization version   GIF version

Theorem cdlemg28 36506
Description: Part of proof of Lemma G of [Crawley] p. 116. Chain the equalities of line 14 on p. 117. TODO: rearrange hypotheses in the order of cdlemg29 36507 (and maybe leading up to this too)? (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
cdlemg33.o 𝑂 = ((𝑃 𝑣) (𝑄 (𝑅𝐺)))
Assertion
Ref Expression
cdlemg28 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐹   𝑧,𝐻   𝑧,   𝑧,𝐾   𝑧,   𝑧,𝑁   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑇   𝑧,𝑊   𝑧,𝑣   𝑧,𝐺   𝑧,𝑂
Allowed substitution hints:   𝐴(𝑣)   𝑃(𝑣)   𝑄(𝑣)   𝑅(𝑣)   𝑇(𝑣)   𝐹(𝑣)   𝐺(𝑣)   𝐻(𝑣)   (𝑣)   𝐾(𝑣)   (𝑣)   (𝑧,𝑣)   𝑁(𝑣)   𝑂(𝑣)   𝑊(𝑣)

Proof of Theorem cdlemg28
StepHypRef Expression
1 simp11 1245 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1246 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp21 1248 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → (𝑣𝐴𝑣 𝑊))
4 simp22 1249 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → (𝑧𝐴 ∧ ¬ 𝑧 𝑊))
5 simp23l 1378 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → 𝐹𝑇)
6 simp23r 1379 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → 𝐺𝑇)
7 simp32 1252 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))
8 simp313 1406 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → 𝑧 (𝑃 𝑣))
9 simp33 1253 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))
10 cdlemg12.l . . . 4 = (le‘𝐾)
11 cdlemg12.j . . . 4 = (join‘𝐾)
12 cdlemg12.m . . . 4 = (meet‘𝐾)
13 cdlemg12.a . . . 4 𝐴 = (Atoms‘𝐾)
14 cdlemg12.h . . . 4 𝐻 = (LHyp‘𝐾)
15 cdlemg12.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
16 cdlemg12b.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
1710, 11, 12, 13, 14, 15, 16cdlemg28a 36495 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑧 (𝐹‘(𝐺𝑧))) 𝑊))
181, 2, 3, 4, 5, 6, 7, 8, 9, 17syl333anc 1508 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑧 (𝐹‘(𝐺𝑧))) 𝑊))
19 cdlemg31.n . . 3 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
20 cdlemg33.o . . 3 𝑂 = ((𝑃 𝑣) (𝑄 (𝑅𝐺)))
2110, 11, 12, 13, 14, 15, 16, 19, 20cdlemg28b 36505 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊) = ((𝑧 (𝐹‘(𝐺𝑧))) 𝑊))
2218, 21eqtr4d 2808 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4786  cfv 6029  (class class class)co 6791  lecple 16149  joincjn 17145  meetcmee 17146  Atomscatm 35065  HLchlt 35152  LHypclh 35785  LTrncltrn 35902  trLctrl 35960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-riotaBAD 34754
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-1st 7313  df-2nd 7314  df-undef 7549  df-map 8009  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-oposet 34978  df-ol 34980  df-oml 34981  df-covers 35068  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-llines 35299  df-lplanes 35300  df-lvols 35301  df-lines 35302  df-psubsp 35304  df-pmap 35305  df-padd 35597  df-lhyp 35789  df-laut 35790  df-ldil 35905  df-ltrn 35906  df-trl 35961
This theorem is referenced by:  cdlemg29  36507
  Copyright terms: Public domain W3C validator