Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem5 Structured version   Visualization version   GIF version

Theorem dalem5 37677
Description: Lemma for dath 37746. Atom 𝑈 (in plane 𝑍 = 𝑆𝑇𝑈) belongs to the 3-dimensional volume formed by 𝑌 and 𝐶. (Contributed by NM, 21-Jul-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem5.o 𝑂 = (LPlanes‘𝐾)
dalem5.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem5.w 𝑊 = (𝑌 𝐶)
Assertion
Ref Expression
dalem5 (𝜑𝑈 𝑊)

Proof of Theorem dalem5
StepHypRef Expression
1 eqid 2740 . 2 (Base‘𝐾) = (Base‘𝐾)
2 dalemc.l . 2 = (le‘𝐾)
3 dalema.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
43dalemkelat 37634 . 2 (𝜑𝐾 ∈ Lat)
5 dalemc.a . . 3 𝐴 = (Atoms‘𝐾)
63, 5dalemueb 37654 . 2 (𝜑𝑈 ∈ (Base‘𝐾))
73dalemkehl 37633 . . 3 (𝜑𝐾 ∈ HL)
83dalemrea 37638 . . 3 (𝜑𝑅𝐴)
9 dalemc.j . . . 4 = (join‘𝐾)
10 dalem5.o . . . 4 𝑂 = (LPlanes‘𝐾)
11 dalem5.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
123, 2, 9, 5, 10, 11dalemcea 37670 . . 3 (𝜑𝐶𝐴)
131, 9, 5hlatjcl 37377 . . 3 ((𝐾 ∈ HL ∧ 𝑅𝐴𝐶𝐴) → (𝑅 𝐶) ∈ (Base‘𝐾))
147, 8, 12, 13syl3anc 1370 . 2 (𝜑 → (𝑅 𝐶) ∈ (Base‘𝐾))
15 dalem5.w . . 3 𝑊 = (𝑌 𝐶)
163, 10dalemyeb 37659 . . . 4 (𝜑𝑌 ∈ (Base‘𝐾))
173, 5dalemceb 37648 . . . 4 (𝜑𝐶 ∈ (Base‘𝐾))
181, 9latjcl 18155 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾)) → (𝑌 𝐶) ∈ (Base‘𝐾))
194, 16, 17, 18syl3anc 1370 . . 3 (𝜑 → (𝑌 𝐶) ∈ (Base‘𝐾))
2015, 19eqeltrid 2845 . 2 (𝜑𝑊 ∈ (Base‘𝐾))
213dalemclrju 37646 . . 3 (𝜑𝐶 (𝑅 𝑈))
223dalemuea 37641 . . . 4 (𝜑𝑈𝐴)
233dalempea 37636 . . . . 5 (𝜑𝑃𝐴)
24 simp313 1321 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑅 𝑃))
253, 24sylbi 216 . . . . 5 (𝜑 → ¬ 𝐶 (𝑅 𝑃))
262, 9, 5atnlej1 37389 . . . . 5 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑅𝐴𝑃𝐴) ∧ ¬ 𝐶 (𝑅 𝑃)) → 𝐶𝑅)
277, 12, 8, 23, 25, 26syl131anc 1382 . . . 4 (𝜑𝐶𝑅)
282, 9, 5hlatexch1 37405 . . . 4 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑈𝐴𝑅𝐴) ∧ 𝐶𝑅) → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
297, 12, 22, 8, 27, 28syl131anc 1382 . . 3 (𝜑 → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
3021, 29mpd 15 . 2 (𝜑𝑈 (𝑅 𝐶))
313, 9, 5dalempjqeb 37655 . . . . . 6 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
323, 5dalemreb 37651 . . . . . 6 (𝜑𝑅 ∈ (Base‘𝐾))
331, 2, 9latlej2 18165 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 ((𝑃 𝑄) 𝑅))
344, 31, 32, 33syl3anc 1370 . . . . 5 (𝜑𝑅 ((𝑃 𝑄) 𝑅))
3534, 11breqtrrdi 5121 . . . 4 (𝜑𝑅 𝑌)
361, 2, 9latjlej1 18169 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾))) → (𝑅 𝑌 → (𝑅 𝐶) (𝑌 𝐶)))
374, 32, 16, 17, 36syl13anc 1371 . . . 4 (𝜑 → (𝑅 𝑌 → (𝑅 𝐶) (𝑌 𝐶)))
3835, 37mpd 15 . . 3 (𝜑 → (𝑅 𝐶) (𝑌 𝐶))
3938, 15breqtrrdi 5121 . 2 (𝜑 → (𝑅 𝐶) 𝑊)
401, 2, 4, 6, 14, 20, 30, 39lattrd 18162 1 (𝜑𝑈 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  cfv 6432  (class class class)co 7271  Basecbs 16910  lecple 16967  joincjn 18027  Latclat 18147  Atomscatm 37273  HLchlt 37360  LPlanesclpl 37502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-proset 18011  df-poset 18029  df-plt 18046  df-lub 18062  df-glb 18063  df-join 18064  df-meet 18065  df-p0 18141  df-lat 18148  df-clat 18215  df-oposet 37186  df-ol 37188  df-oml 37189  df-covers 37276  df-ats 37277  df-atl 37308  df-cvlat 37332  df-hlat 37361  df-llines 37508  df-lplanes 37509
This theorem is referenced by:  dalem6  37678  dalem8  37680
  Copyright terms: Public domain W3C validator