MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp31r Structured version   Visualization version   GIF version

Theorem simp31r 1298
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp31r ((𝜏𝜂 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)

Proof of Theorem simp31r
StepHypRef Expression
1 simp1r 1199 . 2 (((𝜑𝜓) ∧ 𝜒𝜃) → 𝜓)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ps-2c  39510  cdlema1N  39773  cdlemednpq  40281  cdleme19e  40289  cdleme20h  40298  cdleme20j  40300  cdleme20l2  40303  cdleme20m  40305  cdleme22a  40322  cdleme22cN  40324  cdleme22f2  40329  cdleme26f2ALTN  40346  cdleme37m  40444  cdlemg12f  40630  cdlemg12g  40631  cdlemg12  40632  cdlemg28a  40675  cdlemg29  40687  cdlemg33a  40688  cdlemg36  40696  cdlemk16a  40838  cdlemk21-2N  40873  cdlemk54  40940  dihord10  41205
  Copyright terms: Public domain W3C validator