| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp31r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp31r | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1r 1199 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ps-2c 39573 cdlema1N 39836 cdlemednpq 40344 cdleme19e 40352 cdleme20h 40361 cdleme20j 40363 cdleme20l2 40366 cdleme20m 40368 cdleme22a 40385 cdleme22cN 40387 cdleme22f2 40392 cdleme26f2ALTN 40409 cdleme37m 40507 cdlemg12f 40693 cdlemg12g 40694 cdlemg12 40695 cdlemg28a 40738 cdlemg29 40750 cdlemg33a 40751 cdlemg36 40759 cdlemk16a 40901 cdlemk21-2N 40936 cdlemk54 41003 dihord10 41268 |
| Copyright terms: Public domain | W3C validator |