MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp31r Structured version   Visualization version   GIF version

Theorem simp31r 1298
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp31r ((𝜏𝜂 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)

Proof of Theorem simp31r
StepHypRef Expression
1 simp1r 1199 . 2 (((𝜑𝜓) ∧ 𝜒𝜃) → 𝜓)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ps-2c  39547  cdlema1N  39810  cdlemednpq  40318  cdleme19e  40326  cdleme20h  40335  cdleme20j  40337  cdleme20l2  40340  cdleme20m  40342  cdleme22a  40359  cdleme22cN  40361  cdleme22f2  40366  cdleme26f2ALTN  40383  cdleme37m  40481  cdlemg12f  40667  cdlemg12g  40668  cdlemg12  40669  cdlemg28a  40712  cdlemg29  40724  cdlemg33a  40725  cdlemg36  40733  cdlemk16a  40875  cdlemk21-2N  40910  cdlemk54  40977  dihord10  41242
  Copyright terms: Public domain W3C validator