| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp31r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp31r | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1r 1199 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ps-2c 39547 cdlema1N 39810 cdlemednpq 40318 cdleme19e 40326 cdleme20h 40335 cdleme20j 40337 cdleme20l2 40340 cdleme20m 40342 cdleme22a 40359 cdleme22cN 40361 cdleme22f2 40366 cdleme26f2ALTN 40383 cdleme37m 40481 cdlemg12f 40667 cdlemg12g 40668 cdlemg12 40669 cdlemg28a 40712 cdlemg29 40724 cdlemg33a 40725 cdlemg36 40733 cdlemk16a 40875 cdlemk21-2N 40910 cdlemk54 40977 dihord10 41242 |
| Copyright terms: Public domain | W3C validator |