| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp31r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp31r | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1r 1199 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ps-2c 39529 cdlema1N 39792 cdlemednpq 40300 cdleme19e 40308 cdleme20h 40317 cdleme20j 40319 cdleme20l2 40322 cdleme20m 40324 cdleme22a 40341 cdleme22cN 40343 cdleme22f2 40348 cdleme26f2ALTN 40365 cdleme37m 40463 cdlemg12f 40649 cdlemg12g 40650 cdlemg12 40651 cdlemg28a 40694 cdlemg29 40706 cdlemg33a 40707 cdlemg36 40715 cdlemk16a 40857 cdlemk21-2N 40892 cdlemk54 40959 dihord10 41224 |
| Copyright terms: Public domain | W3C validator |