![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp31r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp31r | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1r 1198 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: ps-2c 39485 cdlema1N 39748 cdlemednpq 40256 cdleme19e 40264 cdleme20h 40273 cdleme20j 40275 cdleme20l2 40278 cdleme20m 40280 cdleme22a 40297 cdleme22cN 40299 cdleme22f2 40304 cdleme26f2ALTN 40321 cdleme37m 40419 cdlemg12f 40605 cdlemg12g 40606 cdlemg12 40607 cdlemg28a 40650 cdlemg29 40662 cdlemg33a 40663 cdlemg36 40671 cdlemk16a 40813 cdlemk21-2N 40848 cdlemk54 40915 dihord10 41180 |
Copyright terms: Public domain | W3C validator |