| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp31r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp31r | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1r 1199 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ps-2c 39522 cdlema1N 39785 cdlemednpq 40293 cdleme19e 40301 cdleme20h 40310 cdleme20j 40312 cdleme20l2 40315 cdleme20m 40317 cdleme22a 40334 cdleme22cN 40336 cdleme22f2 40341 cdleme26f2ALTN 40358 cdleme37m 40456 cdlemg12f 40642 cdlemg12g 40643 cdlemg12 40644 cdlemg28a 40687 cdlemg29 40699 cdlemg33a 40700 cdlemg36 40708 cdlemk16a 40850 cdlemk21-2N 40885 cdlemk54 40952 dihord10 41217 |
| Copyright terms: Public domain | W3C validator |