| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp31r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp31r | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1r 1199 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ps-2c 39650 cdlema1N 39913 cdlemednpq 40421 cdleme19e 40429 cdleme20h 40438 cdleme20j 40440 cdleme20l2 40443 cdleme20m 40445 cdleme22a 40462 cdleme22cN 40464 cdleme22f2 40469 cdleme26f2ALTN 40486 cdleme37m 40584 cdlemg12f 40770 cdlemg12g 40771 cdlemg12 40772 cdlemg28a 40815 cdlemg29 40827 cdlemg33a 40828 cdlemg36 40836 cdlemk16a 40978 cdlemk21-2N 41013 cdlemk54 41080 dihord10 41345 |
| Copyright terms: Public domain | W3C validator |