Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp31r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp31r | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1r 1197 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant3 1134 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: ps-2c 37542 cdlema1N 37805 cdlemednpq 38313 cdleme19e 38321 cdleme20h 38330 cdleme20j 38332 cdleme20l2 38335 cdleme20m 38337 cdleme22a 38354 cdleme22cN 38356 cdleme22f2 38361 cdleme26f2ALTN 38378 cdleme37m 38476 cdlemg12f 38662 cdlemg12g 38663 cdlemg12 38664 cdlemg28a 38707 cdlemg29 38719 cdlemg33a 38720 cdlemg36 38728 cdlemk16a 38870 cdlemk21-2N 38905 cdlemk54 38972 dihord10 39237 |
Copyright terms: Public domain | W3C validator |