MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp31r Structured version   Visualization version   GIF version

Theorem simp31r 1298
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp31r ((𝜏𝜂 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)

Proof of Theorem simp31r
StepHypRef Expression
1 simp1r 1199 . 2 (((𝜑𝜓) ∧ 𝜒𝜃) → 𝜓)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ps-2c  39522  cdlema1N  39785  cdlemednpq  40293  cdleme19e  40301  cdleme20h  40310  cdleme20j  40312  cdleme20l2  40315  cdleme20m  40317  cdleme22a  40334  cdleme22cN  40336  cdleme22f2  40341  cdleme26f2ALTN  40358  cdleme37m  40456  cdlemg12f  40642  cdlemg12g  40643  cdlemg12  40644  cdlemg28a  40687  cdlemg29  40699  cdlemg33a  40700  cdlemg36  40708  cdlemk16a  40850  cdlemk21-2N  40885  cdlemk54  40952  dihord10  41217
  Copyright terms: Public domain W3C validator