Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp31r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp31r | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1r 1196 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant3 1133 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ps-2c 37469 cdlema1N 37732 cdlemednpq 38240 cdleme19e 38248 cdleme20h 38257 cdleme20j 38259 cdleme20l2 38262 cdleme20m 38264 cdleme22a 38281 cdleme22cN 38283 cdleme22f2 38288 cdleme26f2ALTN 38305 cdleme37m 38403 cdlemg12f 38589 cdlemg12g 38590 cdlemg12 38591 cdlemg28a 38634 cdlemg29 38646 cdlemg33a 38647 cdlemg36 38655 cdlemk16a 38797 cdlemk21-2N 38832 cdlemk54 38899 dihord10 39164 |
Copyright terms: Public domain | W3C validator |