Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp31l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp31l | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1199 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
2 | 1 | 3ad2ant3 1137 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 |
This theorem is referenced by: ps-2c 37279 cdlema1N 37542 trlval3 37938 cdleme12 38022 cdlemednpq 38050 cdleme19d 38057 cdleme19e 38058 cdleme20f 38065 cdleme20h 38067 cdleme20l2 38072 cdleme20l 38073 cdleme20m 38074 cdleme21j 38087 cdleme22a 38091 cdleme22cN 38093 cdleme22f2 38098 cdleme32b 38193 cdlemg12f 38399 cdlemg12g 38400 cdlemg12 38401 cdlemg28a 38444 cdlemg31b0N 38445 cdlemg29 38456 cdlemg33a 38457 cdlemg36 38465 cdlemg42 38480 cdlemk16a 38607 cdlemk21-2N 38642 cdlemk32 38648 cdlemkid2 38675 cdlemk54 38709 cdlemk55a 38710 dihord10 38974 |
Copyright terms: Public domain | W3C validator |