| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp31l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp31l | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1198 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ps-2c 39566 cdlema1N 39829 trlval3 40225 cdleme12 40309 cdlemednpq 40337 cdleme19d 40344 cdleme19e 40345 cdleme20f 40352 cdleme20h 40354 cdleme20l2 40359 cdleme20l 40360 cdleme20m 40361 cdleme21j 40374 cdleme22a 40378 cdleme22cN 40380 cdleme22f2 40385 cdleme32b 40480 cdlemg12f 40686 cdlemg12g 40687 cdlemg12 40688 cdlemg28a 40731 cdlemg31b0N 40732 cdlemg29 40743 cdlemg33a 40744 cdlemg36 40752 cdlemg42 40767 cdlemk16a 40894 cdlemk21-2N 40929 cdlemk32 40935 cdlemkid2 40962 cdlemk54 40996 cdlemk55a 40997 dihord10 41261 |
| Copyright terms: Public domain | W3C validator |