| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp31l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp31l | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1198 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ps-2c 39507 cdlema1N 39770 trlval3 40166 cdleme12 40250 cdlemednpq 40278 cdleme19d 40285 cdleme19e 40286 cdleme20f 40293 cdleme20h 40295 cdleme20l2 40300 cdleme20l 40301 cdleme20m 40302 cdleme21j 40315 cdleme22a 40319 cdleme22cN 40321 cdleme22f2 40326 cdleme32b 40421 cdlemg12f 40627 cdlemg12g 40628 cdlemg12 40629 cdlemg28a 40672 cdlemg31b0N 40673 cdlemg29 40684 cdlemg33a 40685 cdlemg36 40693 cdlemg42 40708 cdlemk16a 40835 cdlemk21-2N 40870 cdlemk32 40876 cdlemkid2 40903 cdlemk54 40937 cdlemk55a 40938 dihord10 41202 |
| Copyright terms: Public domain | W3C validator |