![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp31l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp31l | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1197 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: ps-2c 39485 cdlema1N 39748 trlval3 40144 cdleme12 40228 cdlemednpq 40256 cdleme19d 40263 cdleme19e 40264 cdleme20f 40271 cdleme20h 40273 cdleme20l2 40278 cdleme20l 40279 cdleme20m 40280 cdleme21j 40293 cdleme22a 40297 cdleme22cN 40299 cdleme22f2 40304 cdleme32b 40399 cdlemg12f 40605 cdlemg12g 40606 cdlemg12 40607 cdlemg28a 40650 cdlemg31b0N 40651 cdlemg29 40662 cdlemg33a 40663 cdlemg36 40671 cdlemg42 40686 cdlemk16a 40813 cdlemk21-2N 40848 cdlemk32 40854 cdlemkid2 40881 cdlemk54 40915 cdlemk55a 40916 dihord10 41180 |
Copyright terms: Public domain | W3C validator |