| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp31l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp31l | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1198 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ps-2c 39493 cdlema1N 39756 trlval3 40152 cdleme12 40236 cdlemednpq 40264 cdleme19d 40271 cdleme19e 40272 cdleme20f 40279 cdleme20h 40281 cdleme20l2 40286 cdleme20l 40287 cdleme20m 40288 cdleme21j 40301 cdleme22a 40305 cdleme22cN 40307 cdleme22f2 40312 cdleme32b 40407 cdlemg12f 40613 cdlemg12g 40614 cdlemg12 40615 cdlemg28a 40658 cdlemg31b0N 40659 cdlemg29 40670 cdlemg33a 40671 cdlemg36 40679 cdlemg42 40694 cdlemk16a 40821 cdlemk21-2N 40856 cdlemk32 40862 cdlemkid2 40889 cdlemk54 40923 cdlemk55a 40924 dihord10 41188 |
| Copyright terms: Public domain | W3C validator |