| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp31l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp31l | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1198 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ps-2c 39522 cdlema1N 39785 trlval3 40181 cdleme12 40265 cdlemednpq 40293 cdleme19d 40300 cdleme19e 40301 cdleme20f 40308 cdleme20h 40310 cdleme20l2 40315 cdleme20l 40316 cdleme20m 40317 cdleme21j 40330 cdleme22a 40334 cdleme22cN 40336 cdleme22f2 40341 cdleme32b 40436 cdlemg12f 40642 cdlemg12g 40643 cdlemg12 40644 cdlemg28a 40687 cdlemg31b0N 40688 cdlemg29 40699 cdlemg33a 40700 cdlemg36 40708 cdlemg42 40723 cdlemk16a 40850 cdlemk21-2N 40885 cdlemk32 40891 cdlemkid2 40918 cdlemk54 40952 cdlemk55a 40953 dihord10 41217 |
| Copyright terms: Public domain | W3C validator |