| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp31l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp31l | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1198 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ps-2c 39647 cdlema1N 39910 trlval3 40306 cdleme12 40390 cdlemednpq 40418 cdleme19d 40425 cdleme19e 40426 cdleme20f 40433 cdleme20h 40435 cdleme20l2 40440 cdleme20l 40441 cdleme20m 40442 cdleme21j 40455 cdleme22a 40459 cdleme22cN 40461 cdleme22f2 40466 cdleme32b 40561 cdlemg12f 40767 cdlemg12g 40768 cdlemg12 40769 cdlemg28a 40812 cdlemg31b0N 40813 cdlemg29 40824 cdlemg33a 40825 cdlemg36 40833 cdlemg42 40848 cdlemk16a 40975 cdlemk21-2N 41010 cdlemk32 41016 cdlemkid2 41043 cdlemk54 41077 cdlemk55a 41078 dihord10 41342 |
| Copyright terms: Public domain | W3C validator |