![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp32l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp32l | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2l 1199 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜑) | |
2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: cdlema1N 39748 paddasslem15 39791 4atex2-0aOLDN 40035 4atex3 40038 trlval3 40144 cdleme12 40228 cdleme19b 40261 cdleme19d 40263 cdleme19e 40264 cdleme20d 40269 cdleme20f 40271 cdleme20g 40272 cdleme21d 40287 cdleme21e 40288 cdleme21f 40289 cdleme22cN 40299 cdleme22e 40301 cdleme22f2 40304 cdleme22g 40305 cdleme26e 40316 cdleme28a 40327 cdleme37m 40419 cdleme39n 40423 cdlemg28b 40660 cdlemk3 40790 cdlemk12 40807 cdlemk12u 40829 cdlemkoatnle-2N 40832 cdlemk13-2N 40833 cdlemkole-2N 40834 cdlemk14-2N 40835 cdlemk15-2N 40836 cdlemk16-2N 40837 cdlemk17-2N 40838 cdlemk18-2N 40843 cdlemk19-2N 40844 cdlemk7u-2N 40845 cdlemk11u-2N 40846 cdlemk20-2N 40849 cdlemk30 40851 cdlemk23-3 40859 cdlemk24-3 40860 |
Copyright terms: Public domain | W3C validator |