![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp32l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp32l | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2l 1260 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜑) | |
2 | 1 | 3ad2ant3 1169 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-3an 1113 |
This theorem is referenced by: cdlema1N 35859 paddasslem15 35902 4atex2-0aOLDN 36146 4atex3 36149 trlval3 36255 cdleme12 36339 cdleme19b 36372 cdleme19d 36374 cdleme19e 36375 cdleme20d 36380 cdleme20f 36382 cdleme20g 36383 cdleme21d 36398 cdleme21e 36399 cdleme21f 36400 cdleme22cN 36410 cdleme22e 36412 cdleme22f2 36415 cdleme22g 36416 cdleme26e 36427 cdleme28a 36438 cdleme37m 36530 cdleme39n 36534 cdlemg28b 36771 cdlemk3 36901 cdlemk12 36918 cdlemk12u 36940 cdlemkoatnle-2N 36943 cdlemk13-2N 36944 cdlemkole-2N 36945 cdlemk14-2N 36946 cdlemk15-2N 36947 cdlemk16-2N 36948 cdlemk17-2N 36949 cdlemk18-2N 36954 cdlemk19-2N 36955 cdlemk7u-2N 36956 cdlemk11u-2N 36957 cdlemk20-2N 36960 cdlemk30 36962 cdlemk23-3 36970 cdlemk24-3 36971 |
Copyright terms: Public domain | W3C validator |