![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp32l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp32l | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2l 1198 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜑) | |
2 | 1 | 3ad2ant3 1134 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: cdlema1N 39774 paddasslem15 39817 4atex2-0aOLDN 40061 4atex3 40064 trlval3 40170 cdleme12 40254 cdleme19b 40287 cdleme19d 40289 cdleme19e 40290 cdleme20d 40295 cdleme20f 40297 cdleme20g 40298 cdleme21d 40313 cdleme21e 40314 cdleme21f 40315 cdleme22cN 40325 cdleme22e 40327 cdleme22f2 40330 cdleme22g 40331 cdleme26e 40342 cdleme28a 40353 cdleme37m 40445 cdleme39n 40449 cdlemg28b 40686 cdlemk3 40816 cdlemk12 40833 cdlemk12u 40855 cdlemkoatnle-2N 40858 cdlemk13-2N 40859 cdlemkole-2N 40860 cdlemk14-2N 40861 cdlemk15-2N 40862 cdlemk16-2N 40863 cdlemk17-2N 40864 cdlemk18-2N 40869 cdlemk19-2N 40870 cdlemk7u-2N 40871 cdlemk11u-2N 40872 cdlemk20-2N 40875 cdlemk30 40877 cdlemk23-3 40885 cdlemk24-3 40886 |
Copyright terms: Public domain | W3C validator |