Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp32l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp32l | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2l 1200 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜑) | |
2 | 1 | 3ad2ant3 1136 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 |
This theorem is referenced by: cdlema1N 37417 paddasslem15 37460 4atex2-0aOLDN 37704 4atex3 37707 trlval3 37813 cdleme12 37897 cdleme19b 37930 cdleme19d 37932 cdleme19e 37933 cdleme20d 37938 cdleme20f 37940 cdleme20g 37941 cdleme21d 37956 cdleme21e 37957 cdleme21f 37958 cdleme22cN 37968 cdleme22e 37970 cdleme22f2 37973 cdleme22g 37974 cdleme26e 37985 cdleme28a 37996 cdleme37m 38088 cdleme39n 38092 cdlemg28b 38329 cdlemk3 38459 cdlemk12 38476 cdlemk12u 38498 cdlemkoatnle-2N 38501 cdlemk13-2N 38502 cdlemkole-2N 38503 cdlemk14-2N 38504 cdlemk15-2N 38505 cdlemk16-2N 38506 cdlemk17-2N 38507 cdlemk18-2N 38512 cdlemk19-2N 38513 cdlemk7u-2N 38514 cdlemk11u-2N 38515 cdlemk20-2N 38518 cdlemk30 38520 cdlemk23-3 38528 cdlemk24-3 38529 |
Copyright terms: Public domain | W3C validator |