| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp32l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp32l | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l 1200 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cdlema1N 39910 paddasslem15 39953 4atex2-0aOLDN 40197 4atex3 40200 trlval3 40306 cdleme12 40390 cdleme19b 40423 cdleme19d 40425 cdleme19e 40426 cdleme20d 40431 cdleme20f 40433 cdleme20g 40434 cdleme21d 40449 cdleme21e 40450 cdleme21f 40451 cdleme22cN 40461 cdleme22e 40463 cdleme22f2 40466 cdleme22g 40467 cdleme26e 40478 cdleme28a 40489 cdleme37m 40581 cdleme39n 40585 cdlemg28b 40822 cdlemk3 40952 cdlemk12 40969 cdlemk12u 40991 cdlemkoatnle-2N 40994 cdlemk13-2N 40995 cdlemkole-2N 40996 cdlemk14-2N 40997 cdlemk15-2N 40998 cdlemk16-2N 40999 cdlemk17-2N 41000 cdlemk18-2N 41005 cdlemk19-2N 41006 cdlemk7u-2N 41007 cdlemk11u-2N 41008 cdlemk20-2N 41011 cdlemk30 41013 cdlemk23-3 41021 cdlemk24-3 41022 |
| Copyright terms: Public domain | W3C validator |