| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp32l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp32l | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l 1200 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cdlema1N 39770 paddasslem15 39813 4atex2-0aOLDN 40057 4atex3 40060 trlval3 40166 cdleme12 40250 cdleme19b 40283 cdleme19d 40285 cdleme19e 40286 cdleme20d 40291 cdleme20f 40293 cdleme20g 40294 cdleme21d 40309 cdleme21e 40310 cdleme21f 40311 cdleme22cN 40321 cdleme22e 40323 cdleme22f2 40326 cdleme22g 40327 cdleme26e 40338 cdleme28a 40349 cdleme37m 40441 cdleme39n 40445 cdlemg28b 40682 cdlemk3 40812 cdlemk12 40829 cdlemk12u 40851 cdlemkoatnle-2N 40854 cdlemk13-2N 40855 cdlemkole-2N 40856 cdlemk14-2N 40857 cdlemk15-2N 40858 cdlemk16-2N 40859 cdlemk17-2N 40860 cdlemk18-2N 40865 cdlemk19-2N 40866 cdlemk7u-2N 40867 cdlemk11u-2N 40868 cdlemk20-2N 40871 cdlemk30 40873 cdlemk23-3 40881 cdlemk24-3 40882 |
| Copyright terms: Public domain | W3C validator |