| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp32l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp32l | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l 1200 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cdlema1N 39829 paddasslem15 39872 4atex2-0aOLDN 40116 4atex3 40119 trlval3 40225 cdleme12 40309 cdleme19b 40342 cdleme19d 40344 cdleme19e 40345 cdleme20d 40350 cdleme20f 40352 cdleme20g 40353 cdleme21d 40368 cdleme21e 40369 cdleme21f 40370 cdleme22cN 40380 cdleme22e 40382 cdleme22f2 40385 cdleme22g 40386 cdleme26e 40397 cdleme28a 40408 cdleme37m 40500 cdleme39n 40504 cdlemg28b 40741 cdlemk3 40871 cdlemk12 40888 cdlemk12u 40910 cdlemkoatnle-2N 40913 cdlemk13-2N 40914 cdlemkole-2N 40915 cdlemk14-2N 40916 cdlemk15-2N 40917 cdlemk16-2N 40918 cdlemk17-2N 40919 cdlemk18-2N 40924 cdlemk19-2N 40925 cdlemk7u-2N 40926 cdlemk11u-2N 40927 cdlemk20-2N 40930 cdlemk30 40932 cdlemk23-3 40940 cdlemk24-3 40941 |
| Copyright terms: Public domain | W3C validator |