| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp32l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp32l | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l 1200 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cdlema1N 39792 paddasslem15 39835 4atex2-0aOLDN 40079 4atex3 40082 trlval3 40188 cdleme12 40272 cdleme19b 40305 cdleme19d 40307 cdleme19e 40308 cdleme20d 40313 cdleme20f 40315 cdleme20g 40316 cdleme21d 40331 cdleme21e 40332 cdleme21f 40333 cdleme22cN 40343 cdleme22e 40345 cdleme22f2 40348 cdleme22g 40349 cdleme26e 40360 cdleme28a 40371 cdleme37m 40463 cdleme39n 40467 cdlemg28b 40704 cdlemk3 40834 cdlemk12 40851 cdlemk12u 40873 cdlemkoatnle-2N 40876 cdlemk13-2N 40877 cdlemkole-2N 40878 cdlemk14-2N 40879 cdlemk15-2N 40880 cdlemk16-2N 40881 cdlemk17-2N 40882 cdlemk18-2N 40887 cdlemk19-2N 40888 cdlemk7u-2N 40889 cdlemk11u-2N 40890 cdlemk20-2N 40893 cdlemk30 40895 cdlemk23-3 40903 cdlemk24-3 40904 |
| Copyright terms: Public domain | W3C validator |