![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihord10 | Structured version Visualization version GIF version |
Description: Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.) |
Ref | Expression |
---|---|
dihjust.b | ⊢ 𝐵 = (Base‘𝐾) |
dihjust.l | ⊢ ≤ = (le‘𝐾) |
dihjust.j | ⊢ ∨ = (join‘𝐾) |
dihjust.m | ⊢ ∧ = (meet‘𝐾) |
dihjust.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dihjust.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihjust.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
dihjust.J | ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
dihjust.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihjust.s | ⊢ ⊕ = (LSSum‘𝑈) |
dihord2c.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihord2c.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dihord2c.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dihord2.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
dihord2.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dihord2.d | ⊢ + = (+g‘𝑈) |
dihord2.g | ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) |
Ref | Expression |
---|---|
dihord10 | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp11 1202 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simp12 1203 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
3 | simp13 1204 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) | |
4 | simp31l 1295 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → 𝑠 ∈ 𝐸) | |
5 | simp31r 1296 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → 𝑔 ∈ 𝑇) | |
6 | simp33 1210 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉)) | |
7 | dihjust.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
8 | dihjust.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
9 | dihjust.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | dihjust.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
11 | dihord2.p | . . . . . 6 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
12 | dihord2c.o | . . . . . 6 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
13 | dihord2c.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
14 | dihord2.e | . . . . . 6 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
15 | dihjust.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
16 | dihord2.d | . . . . . 6 ⊢ + = (+g‘𝑈) | |
17 | dihord2.g | . . . . . 6 ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) | |
18 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | dihordlem7b 41198 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑓 = 𝑔 ∧ 𝑂 = 𝑠)) |
19 | 18 | simpld 494 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → 𝑓 = 𝑔) |
20 | 1, 2, 3, 4, 5, 6, 19 | syl123anc 1386 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → 𝑓 = 𝑔) |
21 | 20 | fveq2d 6911 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑅‘𝑓) = (𝑅‘𝑔)) |
22 | simp32 1209 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊)) | |
23 | 21, 22 | eqbrtrd 5170 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 〈cop 4637 class class class wbr 5148 ↦ cmpt 5231 I cid 5582 ↾ cres 5691 ‘cfv 6563 ℩crio 7387 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 lecple 17305 occoc 17306 joincjn 18369 meetcmee 18370 LSSumclsm 19667 Atomscatm 39245 HLchlt 39332 LHypclh 39967 LTrncltrn 40084 trLctrl 40141 TEndoctendo 40735 DVecHcdvh 41061 DIsoBcdib 41121 DIsoCcdic 41155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-riotaBAD 38935 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-undef 8297 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tendo 40738 df-edring 40740 df-dvech 41062 |
This theorem is referenced by: dihord2pre 41208 |
Copyright terms: Public domain | W3C validator |