Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-2c Structured version   Visualization version   GIF version

Theorem ps-2c 37521
Description: Variation of projective geometry axiom ps-2 37471. (Contributed by NM, 3-Jul-2012.)
Hypotheses
Ref Expression
2atm.l = (le‘𝐾)
2atm.j = (join‘𝐾)
2atm.m = (meet‘𝐾)
2atm.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ps-2c (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) (𝑆 𝑇)) ∈ 𝐴)

Proof of Theorem ps-2c
StepHypRef Expression
1 simp11 1201 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝐾 ∈ HL)
2 simp12 1202 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑃𝐴)
3 simp21 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑅𝐴)
41hllatd 37357 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝐾 ∈ Lat)
5 eqid 2739 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
6 2atm.a . . . . . 6 𝐴 = (Atoms‘𝐾)
75, 6atbase 37282 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
82, 7syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑃 ∈ (Base‘𝐾))
9 simp13 1203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑄𝐴)
105, 6atbase 37282 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
119, 10syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑄 ∈ (Base‘𝐾))
125, 6atbase 37282 . . . . 5 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
133, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑅 ∈ (Base‘𝐾))
14 simp31l 1294 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ¬ 𝑃 (𝑄 𝑅))
15 2atm.l . . . . 5 = (le‘𝐾)
16 2atm.j . . . . 5 = (join‘𝐾)
175, 15, 16latnlej1r 18157 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝑅)
184, 8, 11, 13, 14, 17syl131anc 1381 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑃𝑅)
19 eqid 2739 . . . 4 (LLines‘𝐾) = (LLines‘𝐾)
2016, 6, 19llni2 37505 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 𝑅) ∈ (LLines‘𝐾))
211, 2, 3, 18, 20syl31anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑃 𝑅) ∈ (LLines‘𝐾))
22 simp22 1205 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑆𝐴)
23 simp23 1206 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑇𝐴)
24 simp31r 1295 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑆𝑇)
2516, 6, 19llni2 37505 . . 3 (((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) ∧ 𝑆𝑇) → (𝑆 𝑇) ∈ (LLines‘𝐾))
261, 22, 23, 24, 25syl31anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑆 𝑇) ∈ (LLines‘𝐾))
27 simp32 1208 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑃 𝑅) ≠ (𝑆 𝑇))
28 simp33 1209 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))
29 2atm.m . . . 4 = (meet‘𝐾)
30 eqid 2739 . . . 4 (0.‘𝐾) = (0.‘𝐾)
3115, 16, 29, 30, 6ps-2b 37475 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) (𝑆 𝑇)) ≠ (0.‘𝐾))
321, 2, 9, 3, 22, 23, 14, 24, 28, 31syl333anc 1400 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) (𝑆 𝑇)) ≠ (0.‘𝐾))
3329, 30, 6, 192llnmat 37517 . 2 (((𝐾 ∈ HL ∧ (𝑃 𝑅) ∈ (LLines‘𝐾) ∧ (𝑆 𝑇) ∈ (LLines‘𝐾)) ∧ ((𝑃 𝑅) ≠ (𝑆 𝑇) ∧ ((𝑃 𝑅) (𝑆 𝑇)) ≠ (0.‘𝐾))) → ((𝑃 𝑅) (𝑆 𝑇)) ∈ 𝐴)
341, 21, 26, 27, 32, 33syl32anc 1376 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) (𝑆 𝑇)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944   class class class wbr 5078  cfv 6430  (class class class)co 7268  Basecbs 16893  lecple 16950  joincjn 18010  meetcmee 18011  0.cp0 18122  Latclat 18130  Atomscatm 37256  HLchlt 37343  LLinesclln 37484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-proset 17994  df-poset 18012  df-plt 18029  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-lat 18131  df-clat 18198  df-oposet 37169  df-ol 37171  df-oml 37172  df-covers 37259  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344  df-llines 37491
This theorem is referenced by:  cdlemg18c  38673  dia2dimlem1  39057
  Copyright terms: Public domain W3C validator