Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg29 Structured version   Visualization version   GIF version

Theorem cdlemg29 40210
Description: Eliminate (πΉβ€˜π‘ƒ) β‰  𝑃 and (πΊβ€˜π‘ƒ) β‰  𝑃 from cdlemg28 40209. TODO: would it be better to do this later? (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l ≀ = (leβ€˜πΎ)
cdlemg12.j ∨ = (joinβ€˜πΎ)
cdlemg12.m ∧ = (meetβ€˜πΎ)
cdlemg12.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg12.h 𝐻 = (LHypβ€˜πΎ)
cdlemg12.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg12b.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemg31.n 𝑁 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (π‘…β€˜πΉ)))
cdlemg33.o 𝑂 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (π‘…β€˜πΊ)))
Assertion
Ref Expression
cdlemg29 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐹   𝑧,𝐻   𝑧, ∨   𝑧,𝐾   𝑧, ≀   𝑧,𝑁   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑇   𝑧,π‘Š   𝑧,𝑣   𝑧,𝐺   𝑧,𝑂
Allowed substitution hints:   𝐴(𝑣)   𝑃(𝑣)   𝑄(𝑣)   𝑅(𝑣)   𝑇(𝑣)   𝐹(𝑣)   𝐺(𝑣)   𝐻(𝑣)   ∨ (𝑣)   𝐾(𝑣)   ≀ (𝑣)   ∧ (𝑧,𝑣)   𝑁(𝑣)   𝑂(𝑣)   π‘Š(𝑣)

Proof of Theorem cdlemg29
StepHypRef Expression
1 simpl11 1245 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simpl12 1246 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
3 simpl13 1247 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
4 simp23l 1291 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) β†’ 𝐹 ∈ 𝑇)
54adantr 479 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝐹 ∈ 𝑇)
6 simp23r 1292 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) β†’ 𝐺 ∈ 𝑇)
76adantr 479 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝐺 ∈ 𝑇)
8 simpr 483 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (πΉβ€˜π‘ƒ) = 𝑃)
9 cdlemg12.l . . . 4 ≀ = (leβ€˜πΎ)
10 cdlemg12.j . . . 4 ∨ = (joinβ€˜πΎ)
11 cdlemg12.m . . . 4 ∧ = (meetβ€˜πΎ)
12 cdlemg12.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
13 cdlemg12.h . . . 4 𝐻 = (LHypβ€˜πΎ)
14 cdlemg12.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
15 cdlemg12b.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
169, 10, 11, 12, 13, 14, 15cdlemg14f 40158 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (πΉβ€˜π‘ƒ) = 𝑃)) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
171, 2, 3, 5, 7, 8, 16syl123anc 1384 . 2 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
18 simpl11 1245 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ (πΊβ€˜π‘ƒ) = 𝑃) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
19 simpl12 1246 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ (πΊβ€˜π‘ƒ) = 𝑃) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
20 simpl13 1247 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ (πΊβ€˜π‘ƒ) = 𝑃) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
214adantr 479 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ (πΊβ€˜π‘ƒ) = 𝑃) β†’ 𝐹 ∈ 𝑇)
226adantr 479 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ (πΊβ€˜π‘ƒ) = 𝑃) β†’ 𝐺 ∈ 𝑇)
23 simpr 483 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ (πΊβ€˜π‘ƒ) = 𝑃) β†’ (πΊβ€˜π‘ƒ) = 𝑃)
249, 10, 11, 12, 13, 14, 15cdlemg14g 40159 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (πΊβ€˜π‘ƒ) = 𝑃)) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
2518, 19, 20, 21, 22, 23, 24syl123anc 1384 . 2 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ (πΊβ€˜π‘ƒ) = 𝑃) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
26 simpl1 1188 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ ((πΉβ€˜π‘ƒ) β‰  𝑃 ∧ (πΊβ€˜π‘ƒ) β‰  𝑃)) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
27 simpl2 1189 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ ((πΉβ€˜π‘ƒ) β‰  𝑃 ∧ (πΊβ€˜π‘ƒ) β‰  𝑃)) β†’ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)))
28 simp31l 1293 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) β†’ 𝑧 β‰  𝑁)
2928adantr 479 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ ((πΉβ€˜π‘ƒ) β‰  𝑃 ∧ (πΊβ€˜π‘ƒ) β‰  𝑃)) β†’ 𝑧 β‰  𝑁)
30 simp31r 1294 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) β†’ 𝑧 β‰  𝑂)
3130adantr 479 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ ((πΉβ€˜π‘ƒ) β‰  𝑃 ∧ (πΊβ€˜π‘ƒ) β‰  𝑃)) β†’ 𝑧 β‰  𝑂)
32 simpl32 1252 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ ((πΉβ€˜π‘ƒ) β‰  𝑃 ∧ (πΊβ€˜π‘ƒ) β‰  𝑃)) β†’ 𝑧 ≀ (𝑃 ∨ 𝑣))
3329, 31, 323jca 1125 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ ((πΉβ€˜π‘ƒ) β‰  𝑃 ∧ (πΊβ€˜π‘ƒ) β‰  𝑃)) β†’ (𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)))
34 simpl33 1253 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ ((πΉβ€˜π‘ƒ) β‰  𝑃 ∧ (πΊβ€˜π‘ƒ) β‰  𝑃)) β†’ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))
35 simpr 483 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ ((πΉβ€˜π‘ƒ) β‰  𝑃 ∧ (πΊβ€˜π‘ƒ) β‰  𝑃)) β†’ ((πΉβ€˜π‘ƒ) β‰  𝑃 ∧ (πΊβ€˜π‘ƒ) β‰  𝑃))
36 cdlemg31.n . . . 4 𝑁 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (π‘…β€˜πΉ)))
37 cdlemg33.o . . . 4 𝑂 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (π‘…β€˜πΊ)))
389, 10, 11, 12, 13, 14, 15, 36, 37cdlemg28 40209 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)) ∧ ((πΉβ€˜π‘ƒ) β‰  𝑃 ∧ (πΊβ€˜π‘ƒ) β‰  𝑃))) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
3926, 27, 33, 34, 35, 38syl113anc 1379 . 2 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) ∧ ((πΉβ€˜π‘ƒ) β‰  𝑃 ∧ (πΊβ€˜π‘ƒ) β‰  𝑃)) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
4017, 25, 39pm2.61da2ne 3027 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣) ∧ (𝑣 β‰  (π‘…β€˜πΉ) ∧ 𝑣 β‰  (π‘…β€˜πΊ)))) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2937   class class class wbr 5152  β€˜cfv 6553  (class class class)co 7426  lecple 17247  joincjn 18310  meetcmee 18311  Atomscatm 38767  HLchlt 38854  LHypclh 39489  LTrncltrn 39606  trLctrl 39663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-riotaBAD 38457
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-undef 8285  df-map 8853  df-proset 18294  df-poset 18312  df-plt 18329  df-lub 18345  df-glb 18346  df-join 18347  df-meet 18348  df-p0 18424  df-p1 18425  df-lat 18431  df-clat 18498  df-oposet 38680  df-ol 38682  df-oml 38683  df-covers 38770  df-ats 38771  df-atl 38802  df-cvlat 38826  df-hlat 38855  df-llines 39003  df-lplanes 39004  df-lvols 39005  df-lines 39006  df-psubsp 39008  df-pmap 39009  df-padd 39301  df-lhyp 39493  df-laut 39494  df-ldil 39609  df-ltrn 39610  df-trl 39664
This theorem is referenced by:  cdlemg34  40217
  Copyright terms: Public domain W3C validator