Proof of Theorem cdlemg29
Step | Hyp | Ref
| Expression |
1 | | simpl11 1247 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simpl12 1248 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
3 | | simpl13 1249 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
4 | | simp23l 1293 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) → 𝐹 ∈ 𝑇) |
5 | 4 | adantr 481 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ (𝐹‘𝑃) = 𝑃) → 𝐹 ∈ 𝑇) |
6 | | simp23r 1294 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) → 𝐺 ∈ 𝑇) |
7 | 6 | adantr 481 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ (𝐹‘𝑃) = 𝑃) → 𝐺 ∈ 𝑇) |
8 | | simpr 485 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑃) = 𝑃) |
9 | | cdlemg12.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
10 | | cdlemg12.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
11 | | cdlemg12.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
12 | | cdlemg12.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
13 | | cdlemg12.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
14 | | cdlemg12.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
15 | | cdlemg12b.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
16 | 9, 10, 11, 12, 13, 14, 15 | cdlemg14f 38667 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
17 | 1, 2, 3, 5, 7, 8, 16 | syl123anc 1386 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ (𝐹‘𝑃) = 𝑃) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
18 | | simpl11 1247 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ (𝐺‘𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
19 | | simpl12 1248 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ (𝐺‘𝑃) = 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
20 | | simpl13 1249 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ (𝐺‘𝑃) = 𝑃) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
21 | 4 | adantr 481 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ (𝐺‘𝑃) = 𝑃) → 𝐹 ∈ 𝑇) |
22 | 6 | adantr 481 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ (𝐺‘𝑃) = 𝑃) → 𝐺 ∈ 𝑇) |
23 | | simpr 485 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ (𝐺‘𝑃) = 𝑃) → (𝐺‘𝑃) = 𝑃) |
24 | 9, 10, 11, 12, 13, 14, 15 | cdlemg14g 38668 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐺‘𝑃) = 𝑃)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
25 | 18, 19, 20, 21, 22, 23, 24 | syl123anc 1386 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ (𝐺‘𝑃) = 𝑃) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
26 | | simpl1 1190 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
27 | | simpl2 1191 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇))) |
28 | | simp31l 1295 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) → 𝑧 ≠ 𝑁) |
29 | 28 | adantr 481 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → 𝑧 ≠ 𝑁) |
30 | | simp31r 1296 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) → 𝑧 ≠ 𝑂) |
31 | 30 | adantr 481 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → 𝑧 ≠ 𝑂) |
32 | | simpl32 1254 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → 𝑧 ≤ (𝑃 ∨ 𝑣)) |
33 | 29, 31, 32 | 3jca 1127 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣))) |
34 | | simpl33 1255 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺))) |
35 | | simpr 485 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) |
36 | | cdlemg31.n |
. . . 4
⊢ 𝑁 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) |
37 | | cdlemg33.o |
. . . 4
⊢ 𝑂 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐺))) |
38 | 9, 10, 11, 12, 13, 14, 15, 36, 37 | cdlemg28 38718 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂 ∧ 𝑧 ≤ (𝑃 ∨ 𝑣)) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
39 | 26, 27, 33, 34, 35, 38 | syl113anc 1381 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
40 | 17, 25, 39 | pm2.61da2ne 3033 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑧 ≠ 𝑁 ∧ 𝑧 ≠ 𝑂) ∧ 𝑧 ≤ (𝑃 ∨ 𝑣) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ 𝑣 ≠ (𝑅‘𝐺)))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |