Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg36 Structured version   Visualization version   GIF version

Theorem cdlemg36 38003
Description: Use cdlemg35 to eliminate 𝑣 from cdlemg34 38001. TODO: Fix comment. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
cdlemg35.l = (le‘𝐾)
cdlemg35.j = (join‘𝐾)
cdlemg35.m = (meet‘𝐾)
cdlemg35.a 𝐴 = (Atoms‘𝐾)
cdlemg35.h 𝐻 = (LHyp‘𝐾)
cdlemg35.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg35.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg36 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
Distinct variable groups:   𝐴,𝑟   𝐹,𝑟   𝐺,𝑟   𝐻,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑅,𝑟   𝑊,𝑟
Allowed substitution hint:   𝑇(𝑟)

Proof of Theorem cdlemg36
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp11 1200 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1201 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp21 1203 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐹𝑇)
4 simp22 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐺𝑇)
5 simp31l 1293 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹𝑃) ≠ 𝑃)
6 simp31r 1294 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐺𝑃) ≠ 𝑃)
7 simp32 1207 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅𝐹) ≠ (𝑅𝐺))
8 cdlemg35.l . . . 4 = (le‘𝐾)
9 cdlemg35.j . . . 4 = (join‘𝐾)
10 cdlemg35.m . . . 4 = (meet‘𝐾)
11 cdlemg35.a . . . 4 𝐴 = (Atoms‘𝐾)
12 cdlemg35.h . . . 4 𝐻 = (LHyp‘𝐾)
13 cdlemg35.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 cdlemg35.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
158, 9, 10, 11, 12, 13, 14cdlemg35 38002 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ∃𝑣𝐴 (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺))))
161, 2, 3, 4, 5, 6, 7, 15syl133anc 1390 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑣𝐴 (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺))))
17 simp11 1200 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑣𝐴 ∧ (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
18 simp2 1134 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑣𝐴 ∧ (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))) → 𝑣𝐴)
19 simp3l 1198 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑣𝐴 ∧ (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))) → 𝑣 𝑊)
2018, 19jca 515 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑣𝐴 ∧ (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))) → (𝑣𝐴𝑣 𝑊))
21 simp121 1302 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑣𝐴 ∧ (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))) → 𝐹𝑇)
22 simp122 1303 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑣𝐴 ∧ (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))) → 𝐺𝑇)
2321, 22jca 515 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑣𝐴 ∧ (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))) → (𝐹𝑇𝐺𝑇))
24 simp123 1304 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑣𝐴 ∧ (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))) → 𝑃𝑄)
25 simp3rl 1243 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑣𝐴 ∧ (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))) → 𝑣 ≠ (𝑅𝐹))
26 simp3rr 1244 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑣𝐴 ∧ (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))) → 𝑣 ≠ (𝑅𝐺))
27 simp133 1307 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑣𝐴 ∧ (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
28 eqid 2801 . . . . 5 ((𝑃 𝑣) (𝑄 (𝑅𝐹))) = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
29 eqid 2801 . . . . 5 ((𝑃 𝑣) (𝑄 (𝑅𝐺))) = ((𝑃 𝑣) (𝑄 (𝑅𝐺)))
308, 9, 10, 11, 12, 13, 14, 28, 29cdlemg34 38001 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
3117, 20, 23, 24, 25, 26, 27, 30syl133anc 1390 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑣𝐴 ∧ (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
3231rexlimdv3a 3248 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (∃𝑣𝐴 (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊)))
3316, 32mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wrex 3110   class class class wbr 5033  cfv 6328  (class class class)co 7139  lecple 16567  joincjn 17549  meetcmee 17550  Atomscatm 36552  HLchlt 36639  LHypclh 37273  LTrncltrn 37390  trLctrl 37447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-riotaBAD 36242
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-undef 7926  df-map 8395  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-oposet 36465  df-ol 36467  df-oml 36468  df-covers 36555  df-ats 36556  df-atl 36587  df-cvlat 36611  df-hlat 36640  df-llines 36787  df-lplanes 36788  df-lvols 36789  df-lines 36790  df-psubsp 36792  df-pmap 36793  df-padd 37085  df-lhyp 37277  df-laut 37278  df-ldil 37393  df-ltrn 37394  df-trl 37448
This theorem is referenced by:  cdlemg38  38004
  Copyright terms: Public domain W3C validator