Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpggrpd | Structured version Visualization version GIF version |
Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
simpggrpd.1 | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
Ref | Expression |
---|---|
simpggrpd | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpggrpd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | |
2 | simpggrp 19284 | . 2 ⊢ (𝐺 ∈ SimpGrp → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 Grpcgrp 18169 SimpGrpcsimpg 19280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rab 3079 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-iota 6294 df-fv 6343 df-simpg 19281 |
This theorem is referenced by: simpgntrivd 19288 simpgnideld 19289 simpgnsgd 19290 ablsimpg1gend 19295 ablsimpgcygd 19296 ablsimpgfindlem1 19297 ablsimpgfindlem2 19298 ablsimpgfind 19300 ablsimpgprmd 19305 simpcntrab 43872 |
Copyright terms: Public domain | W3C validator |