| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpggrpd | Structured version Visualization version GIF version | ||
| Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| simpggrpd.1 | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
| Ref | Expression |
|---|---|
| simpggrpd | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpggrpd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | |
| 2 | simpggrp 20026 | . 2 ⊢ (𝐺 ∈ SimpGrp → 𝐺 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18865 SimpGrpcsimpg 20022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-simpg 20023 |
| This theorem is referenced by: simpgntrivd 20030 simpgnideld 20031 simpgnsgd 20032 ablsimpg1gend 20037 ablsimpgcygd 20038 ablsimpgfindlem1 20039 ablsimpgfindlem2 20040 ablsimpgfind 20042 ablsimpgprmd 20047 simpcntrab 46868 |
| Copyright terms: Public domain | W3C validator |