Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpggrpd | Structured version Visualization version GIF version |
Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
simpggrpd.1 | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
Ref | Expression |
---|---|
simpggrpd | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpggrpd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | |
2 | simpggrp 19697 | . 2 ⊢ (𝐺 ∈ SimpGrp → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Grpcgrp 18577 SimpGrpcsimpg 19693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-simpg 19694 |
This theorem is referenced by: simpgntrivd 19701 simpgnideld 19702 simpgnsgd 19703 ablsimpg1gend 19708 ablsimpgcygd 19709 ablsimpgfindlem1 19710 ablsimpgfindlem2 19711 ablsimpgfind 19713 ablsimpgprmd 19718 simpcntrab 44386 |
Copyright terms: Public domain | W3C validator |