MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpggrpd Structured version   Visualization version   GIF version

Theorem simpggrpd 20139
Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypothesis
Ref Expression
simpggrpd.1 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
simpggrpd (𝜑𝐺 ∈ Grp)

Proof of Theorem simpggrpd
StepHypRef Expression
1 simpggrpd.1 . 2 (𝜑𝐺 ∈ SimpGrp)
2 simpggrp 20138 . 2 (𝐺 ∈ SimpGrp → 𝐺 ∈ Grp)
31, 2syl 17 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Grpcgrp 18973  SimpGrpcsimpg 20134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-simpg 20135
This theorem is referenced by:  simpgntrivd  20142  simpgnideld  20143  simpgnsgd  20144  ablsimpg1gend  20149  ablsimpgcygd  20150  ablsimpgfindlem1  20151  ablsimpgfindlem2  20152  ablsimpgfind  20154  ablsimpgprmd  20159  simpcntrab  46791
  Copyright terms: Public domain W3C validator