![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpggrpd | Structured version Visualization version GIF version |
Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
simpggrpd.1 | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
Ref | Expression |
---|---|
simpggrpd | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpggrpd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | |
2 | simpggrp 20138 | . 2 ⊢ (𝐺 ∈ SimpGrp → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18973 SimpGrpcsimpg 20134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-simpg 20135 |
This theorem is referenced by: simpgntrivd 20142 simpgnideld 20143 simpgnsgd 20144 ablsimpg1gend 20149 ablsimpgcygd 20150 ablsimpgfindlem1 20151 ablsimpgfindlem2 20152 ablsimpgfind 20154 ablsimpgprmd 20159 simpcntrab 46791 |
Copyright terms: Public domain | W3C validator |