Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-iotaex | Structured version Visualization version GIF version |
Description: iotaex 6395 without ax-10 2143, ax-11 2160, ax-12 2177. (Contributed by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
sn-iotaex | ⊢ (℩𝑥𝜑) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-iotaval 40091 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
2 | vex 3427 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | eqeltrdi 2848 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
4 | 3 | exlimiv 1938 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
5 | sn-iotanul 40093 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | |
6 | 0ex 5224 | . . 3 ⊢ ∅ ∈ V | |
7 | 5, 6 | eqeltrdi 2848 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
8 | 4, 7 | pm2.61i 185 | 1 ⊢ (℩𝑥𝜑) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1543 ∃wex 1787 ∈ wcel 2112 {cab 2716 Vcvv 3423 ∅c0 4254 {csn 4558 ℩cio 6371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-nul 5223 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ne 2944 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6373 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |