Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-iotaex Structured version   Visualization version   GIF version

Theorem sn-iotaex 40095
Description: iotaex 6395 without ax-10 2143, ax-11 2160, ax-12 2177. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
sn-iotaex (℩𝑥𝜑) ∈ V

Proof of Theorem sn-iotaex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sn-iotaval 40091 . . . 4 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
2 vex 3427 . . . 4 𝑦 ∈ V
31, 2eqeltrdi 2848 . . 3 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V)
43exlimiv 1938 . 2 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V)
5 sn-iotanul 40093 . . 3 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = ∅)
6 0ex 5224 . . 3 ∅ ∈ V
75, 6eqeltrdi 2848 . 2 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V)
84, 7pm2.61i 185 1 (℩𝑥𝜑) ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1543  wex 1787  wcel 2112  {cab 2716  Vcvv 3423  c0 4254  {csn 4558  cio 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710  ax-nul 5223
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator