MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prelpw Structured version   Visualization version   GIF version

Theorem prelpw 5466
Description: An unordered pair of two sets is a member of the powerclass of a class if and only if the two sets are members of that class. (Contributed by AV, 8-Jan-2020.)
Assertion
Ref Expression
prelpw ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶))

Proof of Theorem prelpw
StepHypRef Expression
1 prssg 4844 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))
2 prex 5452 . . 3 {𝐴, 𝐵} ∈ V
32elpw 4626 . 2 ({𝐴, 𝐵} ∈ 𝒫 𝐶 ↔ {𝐴, 𝐵} ⊆ 𝐶)
41, 3bitr4di 289 1 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wss 3976  𝒫 cpw 4622  {cpr 4650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-pw 4624  df-sn 4649  df-pr 4651
This theorem is referenced by:  prelpwi  5467  hashle2prv  14527  umgrpredgv  29175  prprelb  47390
  Copyright terms: Public domain W3C validator