![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prelpw | Structured version Visualization version GIF version |
Description: A pair of two sets belongs to the power class of a class containing those two sets and vice versa. (Contributed by AV, 8-Jan-2020.) |
Ref | Expression |
---|---|
prelpw | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssg 4539 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
2 | prex 5101 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
3 | 2 | elpw 4356 | . 2 ⊢ ({𝐴, 𝐵} ∈ 𝒫 𝐶 ↔ {𝐴, 𝐵} ⊆ 𝐶) |
4 | 1, 3 | syl6bbr 281 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 ⊆ wss 3770 𝒫 cpw 4350 {cpr 4371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-pw 4352 df-sn 4370 df-pr 4372 |
This theorem is referenced by: prelpwi 5107 hashle2prv 13508 umgrpredgv 26375 |
Copyright terms: Public domain | W3C validator |