MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prelpw Structured version   Visualization version   GIF version

Theorem prelpw 5106
Description: A pair of two sets belongs to the power class of a class containing those two sets and vice versa. (Contributed by AV, 8-Jan-2020.)
Assertion
Ref Expression
prelpw ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶))

Proof of Theorem prelpw
StepHypRef Expression
1 prssg 4539 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))
2 prex 5101 . . 3 {𝐴, 𝐵} ∈ V
32elpw 4356 . 2 ({𝐴, 𝐵} ∈ 𝒫 𝐶 ↔ {𝐴, 𝐵} ⊆ 𝐶)
41, 3syl6bbr 281 1 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  wcel 2157  wss 3770  𝒫 cpw 4350  {cpr 4371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pr 5098
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-v 3388  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-pw 4352  df-sn 4370  df-pr 4372
This theorem is referenced by:  prelpwi  5107  hashle2prv  13508  umgrpredgv  26375
  Copyright terms: Public domain W3C validator