MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prelpw Structured version   Visualization version   GIF version

Theorem prelpw 5426
Description: An unordered pair of two sets is a member of the powerclass of a class if and only if the two sets are members of that class. (Contributed by AV, 8-Jan-2020.)
Assertion
Ref Expression
prelpw ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶))

Proof of Theorem prelpw
StepHypRef Expression
1 prssg 4800 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))
2 prex 5412 . . 3 {𝐴, 𝐵} ∈ V
32elpw 4584 . 2 ({𝐴, 𝐵} ∈ 𝒫 𝐶 ↔ {𝐴, 𝐵} ⊆ 𝐶)
41, 3bitr4di 289 1 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wss 3931  𝒫 cpw 4580  {cpr 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-pw 4582  df-sn 4607  df-pr 4609
This theorem is referenced by:  prelpwi  5427  hashle2prv  14501  umgrpredgv  29124  prprelb  47510
  Copyright terms: Public domain W3C validator