MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dis2ndc Structured version   Visualization version   GIF version

Theorem dis2ndc 23398
Description: A discrete space is second-countable iff it is countable. (Contributed by Mario Carneiro, 13-Apr-2015.)
Assertion
Ref Expression
dis2ndc (𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω)

Proof of Theorem dis2ndc
Dummy variables 𝑤 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctex 8978 . 2 (𝑋 ≼ ω → 𝑋 ∈ V)
2 pwexr 7759 . 2 (𝒫 𝑋 ∈ 2ndω → 𝑋 ∈ V)
3 vsnex 5404 . . . . . . . 8 {𝑥} ∈ V
432a1i 12 . . . . . . 7 (𝑋 ∈ V → (𝑥𝑋 → {𝑥} ∈ V))
5 vex 3463 . . . . . . . . . 10 𝑥 ∈ V
65sneqr 4816 . . . . . . . . 9 ({𝑥} = {𝑦} → 𝑥 = 𝑦)
7 sneq 4611 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
86, 7impbii 209 . . . . . . . 8 ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)
982a1i 12 . . . . . . 7 (𝑋 ∈ V → ((𝑥𝑋𝑦𝑋) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)))
104, 9dom2lem 9006 . . . . . 6 (𝑋 ∈ V → (𝑥𝑋 ↦ {𝑥}):𝑋1-1→V)
11 f1f1orn 6829 . . . . . 6 ((𝑥𝑋 ↦ {𝑥}):𝑋1-1→V → (𝑥𝑋 ↦ {𝑥}):𝑋1-1-onto→ran (𝑥𝑋 ↦ {𝑥}))
1210, 11syl 17 . . . . 5 (𝑋 ∈ V → (𝑥𝑋 ↦ {𝑥}):𝑋1-1-onto→ran (𝑥𝑋 ↦ {𝑥}))
13 f1oeng 8985 . . . . 5 ((𝑋 ∈ V ∧ (𝑥𝑋 ↦ {𝑥}):𝑋1-1-onto→ran (𝑥𝑋 ↦ {𝑥})) → 𝑋 ≈ ran (𝑥𝑋 ↦ {𝑥}))
1412, 13mpdan 687 . . . 4 (𝑋 ∈ V → 𝑋 ≈ ran (𝑥𝑋 ↦ {𝑥}))
15 domen1 9133 . . . 4 (𝑋 ≈ ran (𝑥𝑋 ↦ {𝑥}) → (𝑋 ≼ ω ↔ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω))
1614, 15syl 17 . . 3 (𝑋 ∈ V → (𝑋 ≼ ω ↔ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω))
17 distop 22933 . . . . . . 7 (𝑋 ∈ V → 𝒫 𝑋 ∈ Top)
18 simpr 484 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝑥𝑋) → 𝑥𝑋)
195snelpw 5420 . . . . . . . . . 10 (𝑥𝑋 ↔ {𝑥} ∈ 𝒫 𝑋)
2018, 19sylib 218 . . . . . . . . 9 ((𝑋 ∈ V ∧ 𝑥𝑋) → {𝑥} ∈ 𝒫 𝑋)
2120fmpttd 7105 . . . . . . . 8 (𝑋 ∈ V → (𝑥𝑋 ↦ {𝑥}):𝑋⟶𝒫 𝑋)
2221frnd 6714 . . . . . . 7 (𝑋 ∈ V → ran (𝑥𝑋 ↦ {𝑥}) ⊆ 𝒫 𝑋)
23 elpwi 4582 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
2423ad2antrl 728 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → 𝑦𝑋)
25 simprr 772 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → 𝑧𝑦)
2624, 25sseldd 3959 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → 𝑧𝑋)
27 eqidd 2736 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → {𝑧} = {𝑧})
28 sneq 4611 . . . . . . . . . . . 12 (𝑥 = 𝑧 → {𝑥} = {𝑧})
2928rspceeqv 3624 . . . . . . . . . . 11 ((𝑧𝑋 ∧ {𝑧} = {𝑧}) → ∃𝑥𝑋 {𝑧} = {𝑥})
3026, 27, 29syl2anc 584 . . . . . . . . . 10 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → ∃𝑥𝑋 {𝑧} = {𝑥})
31 vsnex 5404 . . . . . . . . . . 11 {𝑧} ∈ V
32 eqid 2735 . . . . . . . . . . . 12 (𝑥𝑋 ↦ {𝑥}) = (𝑥𝑋 ↦ {𝑥})
3332elrnmpt 5938 . . . . . . . . . . 11 ({𝑧} ∈ V → ({𝑧} ∈ ran (𝑥𝑋 ↦ {𝑥}) ↔ ∃𝑥𝑋 {𝑧} = {𝑥}))
3431, 33ax-mp 5 . . . . . . . . . 10 ({𝑧} ∈ ran (𝑥𝑋 ↦ {𝑥}) ↔ ∃𝑥𝑋 {𝑧} = {𝑥})
3530, 34sylibr 234 . . . . . . . . 9 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → {𝑧} ∈ ran (𝑥𝑋 ↦ {𝑥}))
36 vsnid 4639 . . . . . . . . . 10 𝑧 ∈ {𝑧}
3736a1i 11 . . . . . . . . 9 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → 𝑧 ∈ {𝑧})
3825snssd 4785 . . . . . . . . 9 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → {𝑧} ⊆ 𝑦)
39 eleq2 2823 . . . . . . . . . . 11 (𝑤 = {𝑧} → (𝑧𝑤𝑧 ∈ {𝑧}))
40 sseq1 3984 . . . . . . . . . . 11 (𝑤 = {𝑧} → (𝑤𝑦 ↔ {𝑧} ⊆ 𝑦))
4139, 40anbi12d 632 . . . . . . . . . 10 (𝑤 = {𝑧} → ((𝑧𝑤𝑤𝑦) ↔ (𝑧 ∈ {𝑧} ∧ {𝑧} ⊆ 𝑦)))
4241rspcev 3601 . . . . . . . . 9 (({𝑧} ∈ ran (𝑥𝑋 ↦ {𝑥}) ∧ (𝑧 ∈ {𝑧} ∧ {𝑧} ⊆ 𝑦)) → ∃𝑤 ∈ ran (𝑥𝑋 ↦ {𝑥})(𝑧𝑤𝑤𝑦))
4335, 37, 38, 42syl12anc 836 . . . . . . . 8 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → ∃𝑤 ∈ ran (𝑥𝑋 ↦ {𝑥})(𝑧𝑤𝑤𝑦))
4443ralrimivva 3187 . . . . . . 7 (𝑋 ∈ V → ∀𝑦 ∈ 𝒫 𝑋𝑧𝑦𝑤 ∈ ran (𝑥𝑋 ↦ {𝑥})(𝑧𝑤𝑤𝑦))
45 basgen2 22927 . . . . . . 7 ((𝒫 𝑋 ∈ Top ∧ ran (𝑥𝑋 ↦ {𝑥}) ⊆ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝑋𝑧𝑦𝑤 ∈ ran (𝑥𝑋 ↦ {𝑥})(𝑧𝑤𝑤𝑦)) → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) = 𝒫 𝑋)
4617, 22, 44, 45syl3anc 1373 . . . . . 6 (𝑋 ∈ V → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) = 𝒫 𝑋)
4746adantr 480 . . . . 5 ((𝑋 ∈ V ∧ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω) → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) = 𝒫 𝑋)
4846, 17eqeltrd 2834 . . . . . . 7 (𝑋 ∈ V → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) ∈ Top)
49 tgclb 22908 . . . . . . 7 (ran (𝑥𝑋 ↦ {𝑥}) ∈ TopBases ↔ (topGen‘ran (𝑥𝑋 ↦ {𝑥})) ∈ Top)
5048, 49sylibr 234 . . . . . 6 (𝑋 ∈ V → ran (𝑥𝑋 ↦ {𝑥}) ∈ TopBases)
51 2ndci 23386 . . . . . 6 ((ran (𝑥𝑋 ↦ {𝑥}) ∈ TopBases ∧ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω) → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) ∈ 2ndω)
5250, 51sylan 580 . . . . 5 ((𝑋 ∈ V ∧ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω) → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) ∈ 2ndω)
5347, 52eqeltrrd 2835 . . . 4 ((𝑋 ∈ V ∧ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω) → 𝒫 𝑋 ∈ 2ndω)
54 is2ndc 23384 . . . . . 6 (𝒫 𝑋 ∈ 2ndω ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋))
55 vex 3463 . . . . . . . . 9 𝑏 ∈ V
56 simpr 484 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → 𝑥𝑋)
5756, 19sylib 218 . . . . . . . . . . . . . 14 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → {𝑥} ∈ 𝒫 𝑋)
58 simplrr 777 . . . . . . . . . . . . . 14 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → (topGen‘𝑏) = 𝒫 𝑋)
5957, 58eleqtrrd 2837 . . . . . . . . . . . . 13 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → {𝑥} ∈ (topGen‘𝑏))
60 vsnid 4639 . . . . . . . . . . . . 13 𝑥 ∈ {𝑥}
61 tg2 22903 . . . . . . . . . . . . 13 (({𝑥} ∈ (topGen‘𝑏) ∧ 𝑥 ∈ {𝑥}) → ∃𝑦𝑏 (𝑥𝑦𝑦 ⊆ {𝑥}))
6259, 60, 61sylancl 586 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → ∃𝑦𝑏 (𝑥𝑦𝑦 ⊆ {𝑥}))
63 simprrl 780 . . . . . . . . . . . . . . 15 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → 𝑥𝑦)
6463snssd 4785 . . . . . . . . . . . . . 14 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → {𝑥} ⊆ 𝑦)
65 simprrr 781 . . . . . . . . . . . . . 14 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → 𝑦 ⊆ {𝑥})
6664, 65eqssd 3976 . . . . . . . . . . . . 13 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → {𝑥} = 𝑦)
67 simprl 770 . . . . . . . . . . . . 13 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → 𝑦𝑏)
6866, 67eqeltrd 2834 . . . . . . . . . . . 12 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → {𝑥} ∈ 𝑏)
6962, 68rexlimddv 3147 . . . . . . . . . . 11 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → {𝑥} ∈ 𝑏)
7069fmpttd 7105 . . . . . . . . . 10 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → (𝑥𝑋 ↦ {𝑥}):𝑋𝑏)
7170frnd 6714 . . . . . . . . 9 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → ran (𝑥𝑋 ↦ {𝑥}) ⊆ 𝑏)
72 ssdomg 9014 . . . . . . . . 9 (𝑏 ∈ V → (ran (𝑥𝑋 ↦ {𝑥}) ⊆ 𝑏 → ran (𝑥𝑋 ↦ {𝑥}) ≼ 𝑏))
7355, 71, 72mpsyl 68 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → ran (𝑥𝑋 ↦ {𝑥}) ≼ 𝑏)
74 simprl 770 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → 𝑏 ≼ ω)
75 domtr 9021 . . . . . . . 8 ((ran (𝑥𝑋 ↦ {𝑥}) ≼ 𝑏𝑏 ≼ ω) → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω)
7673, 74, 75syl2anc 584 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω)
7776rexlimdva2 3143 . . . . . 6 (𝑋 ∈ V → (∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋) → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω))
7854, 77biimtrid 242 . . . . 5 (𝑋 ∈ V → (𝒫 𝑋 ∈ 2ndω → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω))
7978imp 406 . . . 4 ((𝑋 ∈ V ∧ 𝒫 𝑋 ∈ 2ndω) → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω)
8053, 79impbida 800 . . 3 (𝑋 ∈ V → (ran (𝑥𝑋 ↦ {𝑥}) ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω))
8116, 80bitrd 279 . 2 (𝑋 ∈ V → (𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω))
821, 2, 81pm5.21nii 378 1 (𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  wss 3926  𝒫 cpw 4575  {csn 4601   class class class wbr 5119  cmpt 5201  ran crn 5655  1-1wf1 6528  1-1-ontowf1o 6530  cfv 6531  ωcom 7861  cen 8956  cdom 8957  topGenctg 17451  Topctop 22831  TopBasesctb 22883  2ndωc2ndc 23376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-er 8719  df-en 8960  df-dom 8961  df-topgen 17457  df-top 22832  df-bases 22884  df-2ndc 23378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator