MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dis2ndc Structured version   Visualization version   GIF version

Theorem dis2ndc 22519
Description: A discrete space is second-countable iff it is countable. (Contributed by Mario Carneiro, 13-Apr-2015.)
Assertion
Ref Expression
dis2ndc (𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω)

Proof of Theorem dis2ndc
Dummy variables 𝑤 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctex 8708 . 2 (𝑋 ≼ ω → 𝑋 ∈ V)
2 pwexr 7593 . 2 (𝒫 𝑋 ∈ 2ndω → 𝑋 ∈ V)
3 snex 5349 . . . . . . . 8 {𝑥} ∈ V
432a1i 12 . . . . . . 7 (𝑋 ∈ V → (𝑥𝑋 → {𝑥} ∈ V))
5 vex 3426 . . . . . . . . . 10 𝑥 ∈ V
65sneqr 4768 . . . . . . . . 9 ({𝑥} = {𝑦} → 𝑥 = 𝑦)
7 sneq 4568 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
86, 7impbii 208 . . . . . . . 8 ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)
982a1i 12 . . . . . . 7 (𝑋 ∈ V → ((𝑥𝑋𝑦𝑋) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)))
104, 9dom2lem 8735 . . . . . 6 (𝑋 ∈ V → (𝑥𝑋 ↦ {𝑥}):𝑋1-1→V)
11 f1f1orn 6711 . . . . . 6 ((𝑥𝑋 ↦ {𝑥}):𝑋1-1→V → (𝑥𝑋 ↦ {𝑥}):𝑋1-1-onto→ran (𝑥𝑋 ↦ {𝑥}))
1210, 11syl 17 . . . . 5 (𝑋 ∈ V → (𝑥𝑋 ↦ {𝑥}):𝑋1-1-onto→ran (𝑥𝑋 ↦ {𝑥}))
13 f1oeng 8714 . . . . 5 ((𝑋 ∈ V ∧ (𝑥𝑋 ↦ {𝑥}):𝑋1-1-onto→ran (𝑥𝑋 ↦ {𝑥})) → 𝑋 ≈ ran (𝑥𝑋 ↦ {𝑥}))
1412, 13mpdan 683 . . . 4 (𝑋 ∈ V → 𝑋 ≈ ran (𝑥𝑋 ↦ {𝑥}))
15 domen1 8855 . . . 4 (𝑋 ≈ ran (𝑥𝑋 ↦ {𝑥}) → (𝑋 ≼ ω ↔ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω))
1614, 15syl 17 . . 3 (𝑋 ∈ V → (𝑋 ≼ ω ↔ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω))
17 distop 22053 . . . . . . 7 (𝑋 ∈ V → 𝒫 𝑋 ∈ Top)
18 simpr 484 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝑥𝑋) → 𝑥𝑋)
195snelpw 5355 . . . . . . . . . 10 (𝑥𝑋 ↔ {𝑥} ∈ 𝒫 𝑋)
2018, 19sylib 217 . . . . . . . . 9 ((𝑋 ∈ V ∧ 𝑥𝑋) → {𝑥} ∈ 𝒫 𝑋)
2120fmpttd 6971 . . . . . . . 8 (𝑋 ∈ V → (𝑥𝑋 ↦ {𝑥}):𝑋⟶𝒫 𝑋)
2221frnd 6592 . . . . . . 7 (𝑋 ∈ V → ran (𝑥𝑋 ↦ {𝑥}) ⊆ 𝒫 𝑋)
23 elpwi 4539 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
2423ad2antrl 724 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → 𝑦𝑋)
25 simprr 769 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → 𝑧𝑦)
2624, 25sseldd 3918 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → 𝑧𝑋)
27 eqidd 2739 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → {𝑧} = {𝑧})
28 sneq 4568 . . . . . . . . . . . 12 (𝑥 = 𝑧 → {𝑥} = {𝑧})
2928rspceeqv 3567 . . . . . . . . . . 11 ((𝑧𝑋 ∧ {𝑧} = {𝑧}) → ∃𝑥𝑋 {𝑧} = {𝑥})
3026, 27, 29syl2anc 583 . . . . . . . . . 10 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → ∃𝑥𝑋 {𝑧} = {𝑥})
31 snex 5349 . . . . . . . . . . 11 {𝑧} ∈ V
32 eqid 2738 . . . . . . . . . . . 12 (𝑥𝑋 ↦ {𝑥}) = (𝑥𝑋 ↦ {𝑥})
3332elrnmpt 5854 . . . . . . . . . . 11 ({𝑧} ∈ V → ({𝑧} ∈ ran (𝑥𝑋 ↦ {𝑥}) ↔ ∃𝑥𝑋 {𝑧} = {𝑥}))
3431, 33ax-mp 5 . . . . . . . . . 10 ({𝑧} ∈ ran (𝑥𝑋 ↦ {𝑥}) ↔ ∃𝑥𝑋 {𝑧} = {𝑥})
3530, 34sylibr 233 . . . . . . . . 9 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → {𝑧} ∈ ran (𝑥𝑋 ↦ {𝑥}))
36 vsnid 4595 . . . . . . . . . 10 𝑧 ∈ {𝑧}
3736a1i 11 . . . . . . . . 9 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → 𝑧 ∈ {𝑧})
3825snssd 4739 . . . . . . . . 9 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → {𝑧} ⊆ 𝑦)
39 eleq2 2827 . . . . . . . . . . 11 (𝑤 = {𝑧} → (𝑧𝑤𝑧 ∈ {𝑧}))
40 sseq1 3942 . . . . . . . . . . 11 (𝑤 = {𝑧} → (𝑤𝑦 ↔ {𝑧} ⊆ 𝑦))
4139, 40anbi12d 630 . . . . . . . . . 10 (𝑤 = {𝑧} → ((𝑧𝑤𝑤𝑦) ↔ (𝑧 ∈ {𝑧} ∧ {𝑧} ⊆ 𝑦)))
4241rspcev 3552 . . . . . . . . 9 (({𝑧} ∈ ran (𝑥𝑋 ↦ {𝑥}) ∧ (𝑧 ∈ {𝑧} ∧ {𝑧} ⊆ 𝑦)) → ∃𝑤 ∈ ran (𝑥𝑋 ↦ {𝑥})(𝑧𝑤𝑤𝑦))
4335, 37, 38, 42syl12anc 833 . . . . . . . 8 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → ∃𝑤 ∈ ran (𝑥𝑋 ↦ {𝑥})(𝑧𝑤𝑤𝑦))
4443ralrimivva 3114 . . . . . . 7 (𝑋 ∈ V → ∀𝑦 ∈ 𝒫 𝑋𝑧𝑦𝑤 ∈ ran (𝑥𝑋 ↦ {𝑥})(𝑧𝑤𝑤𝑦))
45 basgen2 22047 . . . . . . 7 ((𝒫 𝑋 ∈ Top ∧ ran (𝑥𝑋 ↦ {𝑥}) ⊆ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝑋𝑧𝑦𝑤 ∈ ran (𝑥𝑋 ↦ {𝑥})(𝑧𝑤𝑤𝑦)) → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) = 𝒫 𝑋)
4617, 22, 44, 45syl3anc 1369 . . . . . 6 (𝑋 ∈ V → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) = 𝒫 𝑋)
4746adantr 480 . . . . 5 ((𝑋 ∈ V ∧ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω) → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) = 𝒫 𝑋)
4846, 17eqeltrd 2839 . . . . . . 7 (𝑋 ∈ V → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) ∈ Top)
49 tgclb 22028 . . . . . . 7 (ran (𝑥𝑋 ↦ {𝑥}) ∈ TopBases ↔ (topGen‘ran (𝑥𝑋 ↦ {𝑥})) ∈ Top)
5048, 49sylibr 233 . . . . . 6 (𝑋 ∈ V → ran (𝑥𝑋 ↦ {𝑥}) ∈ TopBases)
51 2ndci 22507 . . . . . 6 ((ran (𝑥𝑋 ↦ {𝑥}) ∈ TopBases ∧ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω) → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) ∈ 2ndω)
5250, 51sylan 579 . . . . 5 ((𝑋 ∈ V ∧ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω) → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) ∈ 2ndω)
5347, 52eqeltrrd 2840 . . . 4 ((𝑋 ∈ V ∧ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω) → 𝒫 𝑋 ∈ 2ndω)
54 is2ndc 22505 . . . . . 6 (𝒫 𝑋 ∈ 2ndω ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋))
55 vex 3426 . . . . . . . . 9 𝑏 ∈ V
56 simpr 484 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → 𝑥𝑋)
5756, 19sylib 217 . . . . . . . . . . . . . 14 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → {𝑥} ∈ 𝒫 𝑋)
58 simplrr 774 . . . . . . . . . . . . . 14 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → (topGen‘𝑏) = 𝒫 𝑋)
5957, 58eleqtrrd 2842 . . . . . . . . . . . . 13 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → {𝑥} ∈ (topGen‘𝑏))
60 vsnid 4595 . . . . . . . . . . . . 13 𝑥 ∈ {𝑥}
61 tg2 22023 . . . . . . . . . . . . 13 (({𝑥} ∈ (topGen‘𝑏) ∧ 𝑥 ∈ {𝑥}) → ∃𝑦𝑏 (𝑥𝑦𝑦 ⊆ {𝑥}))
6259, 60, 61sylancl 585 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → ∃𝑦𝑏 (𝑥𝑦𝑦 ⊆ {𝑥}))
63 simprrl 777 . . . . . . . . . . . . . . 15 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → 𝑥𝑦)
6463snssd 4739 . . . . . . . . . . . . . 14 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → {𝑥} ⊆ 𝑦)
65 simprrr 778 . . . . . . . . . . . . . 14 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → 𝑦 ⊆ {𝑥})
6664, 65eqssd 3934 . . . . . . . . . . . . 13 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → {𝑥} = 𝑦)
67 simprl 767 . . . . . . . . . . . . 13 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → 𝑦𝑏)
6866, 67eqeltrd 2839 . . . . . . . . . . . 12 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → {𝑥} ∈ 𝑏)
6962, 68rexlimddv 3219 . . . . . . . . . . 11 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → {𝑥} ∈ 𝑏)
7069fmpttd 6971 . . . . . . . . . 10 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → (𝑥𝑋 ↦ {𝑥}):𝑋𝑏)
7170frnd 6592 . . . . . . . . 9 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → ran (𝑥𝑋 ↦ {𝑥}) ⊆ 𝑏)
72 ssdomg 8741 . . . . . . . . 9 (𝑏 ∈ V → (ran (𝑥𝑋 ↦ {𝑥}) ⊆ 𝑏 → ran (𝑥𝑋 ↦ {𝑥}) ≼ 𝑏))
7355, 71, 72mpsyl 68 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → ran (𝑥𝑋 ↦ {𝑥}) ≼ 𝑏)
74 simprl 767 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → 𝑏 ≼ ω)
75 domtr 8748 . . . . . . . 8 ((ran (𝑥𝑋 ↦ {𝑥}) ≼ 𝑏𝑏 ≼ ω) → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω)
7673, 74, 75syl2anc 583 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω)
7776rexlimdva2 3215 . . . . . 6 (𝑋 ∈ V → (∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋) → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω))
7854, 77syl5bi 241 . . . . 5 (𝑋 ∈ V → (𝒫 𝑋 ∈ 2ndω → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω))
7978imp 406 . . . 4 ((𝑋 ∈ V ∧ 𝒫 𝑋 ∈ 2ndω) → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω)
8053, 79impbida 797 . . 3 (𝑋 ∈ V → (ran (𝑥𝑋 ↦ {𝑥}) ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω))
8116, 80bitrd 278 . 2 (𝑋 ∈ V → (𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω))
821, 2, 81pm5.21nii 379 1 (𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  cmpt 5153  ran crn 5581  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  ωcom 7687  cen 8688  cdom 8689  topGenctg 17065  Topctop 21950  TopBasesctb 22003  2ndωc2ndc 22497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-topgen 17071  df-top 21951  df-bases 22004  df-2ndc 22499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator