| Step | Hyp | Ref
| Expression |
| 1 | | ctex 9004 |
. 2
⊢ (𝑋 ≼ ω → 𝑋 ∈ V) |
| 2 | | pwexr 7785 |
. 2
⊢
(𝒫 𝑋 ∈
2ndω → 𝑋 ∈ V) |
| 3 | | vsnex 5434 |
. . . . . . . 8
⊢ {𝑥} ∈ V |
| 4 | 3 | 2a1i 12 |
. . . . . . 7
⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋 → {𝑥} ∈ V)) |
| 5 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 6 | 5 | sneqr 4840 |
. . . . . . . . 9
⊢ ({𝑥} = {𝑦} → 𝑥 = 𝑦) |
| 7 | | sneq 4636 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
| 8 | 6, 7 | impbii 209 |
. . . . . . . 8
⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
| 9 | 8 | 2a1i 12 |
. . . . . . 7
⊢ (𝑋 ∈ V → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))) |
| 10 | 4, 9 | dom2lem 9032 |
. . . . . 6
⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋 ↦ {𝑥}):𝑋–1-1→V) |
| 11 | | f1f1orn 6859 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ↦ {𝑥}):𝑋–1-1→V → (𝑥 ∈ 𝑋 ↦ {𝑥}):𝑋–1-1-onto→ran
(𝑥 ∈ 𝑋 ↦ {𝑥})) |
| 12 | 10, 11 | syl 17 |
. . . . 5
⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋 ↦ {𝑥}):𝑋–1-1-onto→ran
(𝑥 ∈ 𝑋 ↦ {𝑥})) |
| 13 | | f1oeng 9011 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ (𝑥 ∈ 𝑋 ↦ {𝑥}):𝑋–1-1-onto→ran
(𝑥 ∈ 𝑋 ↦ {𝑥})) → 𝑋 ≈ ran (𝑥 ∈ 𝑋 ↦ {𝑥})) |
| 14 | 12, 13 | mpdan 687 |
. . . 4
⊢ (𝑋 ∈ V → 𝑋 ≈ ran (𝑥 ∈ 𝑋 ↦ {𝑥})) |
| 15 | | domen1 9159 |
. . . 4
⊢ (𝑋 ≈ ran (𝑥 ∈ 𝑋 ↦ {𝑥}) → (𝑋 ≼ ω ↔ ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ ω)) |
| 16 | 14, 15 | syl 17 |
. . 3
⊢ (𝑋 ∈ V → (𝑋 ≼ ω ↔ ran
(𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ ω)) |
| 17 | | distop 23002 |
. . . . . . 7
⊢ (𝑋 ∈ V → 𝒫 𝑋 ∈ Top) |
| 18 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ V ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 19 | 5 | snelpw 5450 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑋 ↔ {𝑥} ∈ 𝒫 𝑋) |
| 20 | 18, 19 | sylib 218 |
. . . . . . . . 9
⊢ ((𝑋 ∈ V ∧ 𝑥 ∈ 𝑋) → {𝑥} ∈ 𝒫 𝑋) |
| 21 | 20 | fmpttd 7135 |
. . . . . . . 8
⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋 ↦ {𝑥}):𝑋⟶𝒫 𝑋) |
| 22 | 21 | frnd 6744 |
. . . . . . 7
⊢ (𝑋 ∈ V → ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ⊆ 𝒫 𝑋) |
| 23 | | elpwi 4607 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋) |
| 24 | 23 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦)) → 𝑦 ⊆ 𝑋) |
| 25 | | simprr 773 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦)) → 𝑧 ∈ 𝑦) |
| 26 | 24, 25 | sseldd 3984 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦)) → 𝑧 ∈ 𝑋) |
| 27 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦)) → {𝑧} = {𝑧}) |
| 28 | | sneq 4636 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) |
| 29 | 28 | rspceeqv 3645 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑋 ∧ {𝑧} = {𝑧}) → ∃𝑥 ∈ 𝑋 {𝑧} = {𝑥}) |
| 30 | 26, 27, 29 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦)) → ∃𝑥 ∈ 𝑋 {𝑧} = {𝑥}) |
| 31 | | vsnex 5434 |
. . . . . . . . . . 11
⊢ {𝑧} ∈ V |
| 32 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 ↦ {𝑥}) = (𝑥 ∈ 𝑋 ↦ {𝑥}) |
| 33 | 32 | elrnmpt 5969 |
. . . . . . . . . . 11
⊢ ({𝑧} ∈ V → ({𝑧} ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ↔ ∃𝑥 ∈ 𝑋 {𝑧} = {𝑥})) |
| 34 | 31, 33 | ax-mp 5 |
. . . . . . . . . 10
⊢ ({𝑧} ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ↔ ∃𝑥 ∈ 𝑋 {𝑧} = {𝑥}) |
| 35 | 30, 34 | sylibr 234 |
. . . . . . . . 9
⊢ ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦)) → {𝑧} ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑥})) |
| 36 | | vsnid 4663 |
. . . . . . . . . 10
⊢ 𝑧 ∈ {𝑧} |
| 37 | 36 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦)) → 𝑧 ∈ {𝑧}) |
| 38 | 25 | snssd 4809 |
. . . . . . . . 9
⊢ ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦)) → {𝑧} ⊆ 𝑦) |
| 39 | | eleq2 2830 |
. . . . . . . . . . 11
⊢ (𝑤 = {𝑧} → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ {𝑧})) |
| 40 | | sseq1 4009 |
. . . . . . . . . . 11
⊢ (𝑤 = {𝑧} → (𝑤 ⊆ 𝑦 ↔ {𝑧} ⊆ 𝑦)) |
| 41 | 39, 40 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑤 = {𝑧} → ((𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦) ↔ (𝑧 ∈ {𝑧} ∧ {𝑧} ⊆ 𝑦))) |
| 42 | 41 | rspcev 3622 |
. . . . . . . . 9
⊢ (({𝑧} ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ∧ (𝑧 ∈ {𝑧} ∧ {𝑧} ⊆ 𝑦)) → ∃𝑤 ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑥})(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦)) |
| 43 | 35, 37, 38, 42 | syl12anc 837 |
. . . . . . . 8
⊢ ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦)) → ∃𝑤 ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑥})(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦)) |
| 44 | 43 | ralrimivva 3202 |
. . . . . . 7
⊢ (𝑋 ∈ V → ∀𝑦 ∈ 𝒫 𝑋∀𝑧 ∈ 𝑦 ∃𝑤 ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑥})(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦)) |
| 45 | | basgen2 22996 |
. . . . . . 7
⊢
((𝒫 𝑋 ∈
Top ∧ ran (𝑥 ∈
𝑋 ↦ {𝑥}) ⊆ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝑋∀𝑧 ∈ 𝑦 ∃𝑤 ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑥})(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦)) → (topGen‘ran (𝑥 ∈ 𝑋 ↦ {𝑥})) = 𝒫 𝑋) |
| 46 | 17, 22, 44, 45 | syl3anc 1373 |
. . . . . 6
⊢ (𝑋 ∈ V →
(topGen‘ran (𝑥 ∈
𝑋 ↦ {𝑥})) = 𝒫 𝑋) |
| 47 | 46 | adantr 480 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ ω) → (topGen‘ran
(𝑥 ∈ 𝑋 ↦ {𝑥})) = 𝒫 𝑋) |
| 48 | 46, 17 | eqeltrd 2841 |
. . . . . . 7
⊢ (𝑋 ∈ V →
(topGen‘ran (𝑥 ∈
𝑋 ↦ {𝑥})) ∈ Top) |
| 49 | | tgclb 22977 |
. . . . . . 7
⊢ (ran
(𝑥 ∈ 𝑋 ↦ {𝑥}) ∈ TopBases ↔ (topGen‘ran
(𝑥 ∈ 𝑋 ↦ {𝑥})) ∈ Top) |
| 50 | 48, 49 | sylibr 234 |
. . . . . 6
⊢ (𝑋 ∈ V → ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ∈ TopBases) |
| 51 | | 2ndci 23456 |
. . . . . 6
⊢ ((ran
(𝑥 ∈ 𝑋 ↦ {𝑥}) ∈ TopBases ∧ ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ ω) → (topGen‘ran
(𝑥 ∈ 𝑋 ↦ {𝑥})) ∈
2ndω) |
| 52 | 50, 51 | sylan 580 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ ω) → (topGen‘ran
(𝑥 ∈ 𝑋 ↦ {𝑥})) ∈
2ndω) |
| 53 | 47, 52 | eqeltrrd 2842 |
. . . 4
⊢ ((𝑋 ∈ V ∧ ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ ω) → 𝒫 𝑋 ∈
2ndω) |
| 54 | | is2ndc 23454 |
. . . . . 6
⊢
(𝒫 𝑋 ∈
2ndω ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) |
| 55 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑏 ∈ V |
| 56 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) =
𝒫 𝑋)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 57 | 56, 19 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) =
𝒫 𝑋)) ∧ 𝑥 ∈ 𝑋) → {𝑥} ∈ 𝒫 𝑋) |
| 58 | | simplrr 778 |
. . . . . . . . . . . . . 14
⊢ ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) =
𝒫 𝑋)) ∧ 𝑥 ∈ 𝑋) → (topGen‘𝑏) = 𝒫 𝑋) |
| 59 | 57, 58 | eleqtrrd 2844 |
. . . . . . . . . . . . 13
⊢ ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) =
𝒫 𝑋)) ∧ 𝑥 ∈ 𝑋) → {𝑥} ∈ (topGen‘𝑏)) |
| 60 | | vsnid 4663 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ {𝑥} |
| 61 | | tg2 22972 |
. . . . . . . . . . . . 13
⊢ (({𝑥} ∈ (topGen‘𝑏) ∧ 𝑥 ∈ {𝑥}) → ∃𝑦 ∈ 𝑏 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ {𝑥})) |
| 62 | 59, 60, 61 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) =
𝒫 𝑋)) ∧ 𝑥 ∈ 𝑋) → ∃𝑦 ∈ 𝑏 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ {𝑥})) |
| 63 | | simprrl 781 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑋 ∈ V
∧ 𝑏 ∈ TopBases)
∧ (𝑏 ≼ ω
∧ (topGen‘𝑏) =
𝒫 𝑋)) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑏 ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ {𝑥}))) → 𝑥 ∈ 𝑦) |
| 64 | 63 | snssd 4809 |
. . . . . . . . . . . . . 14
⊢
(((((𝑋 ∈ V
∧ 𝑏 ∈ TopBases)
∧ (𝑏 ≼ ω
∧ (topGen‘𝑏) =
𝒫 𝑋)) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑏 ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ {𝑥}))) → {𝑥} ⊆ 𝑦) |
| 65 | | simprrr 782 |
. . . . . . . . . . . . . 14
⊢
(((((𝑋 ∈ V
∧ 𝑏 ∈ TopBases)
∧ (𝑏 ≼ ω
∧ (topGen‘𝑏) =
𝒫 𝑋)) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑏 ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ {𝑥}))) → 𝑦 ⊆ {𝑥}) |
| 66 | 64, 65 | eqssd 4001 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ V
∧ 𝑏 ∈ TopBases)
∧ (𝑏 ≼ ω
∧ (topGen‘𝑏) =
𝒫 𝑋)) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑏 ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ {𝑥}))) → {𝑥} = 𝑦) |
| 67 | | simprl 771 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ V
∧ 𝑏 ∈ TopBases)
∧ (𝑏 ≼ ω
∧ (topGen‘𝑏) =
𝒫 𝑋)) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑏 ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ {𝑥}))) → 𝑦 ∈ 𝑏) |
| 68 | 66, 67 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢
(((((𝑋 ∈ V
∧ 𝑏 ∈ TopBases)
∧ (𝑏 ≼ ω
∧ (topGen‘𝑏) =
𝒫 𝑋)) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑏 ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ {𝑥}))) → {𝑥} ∈ 𝑏) |
| 69 | 62, 68 | rexlimddv 3161 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) =
𝒫 𝑋)) ∧ 𝑥 ∈ 𝑋) → {𝑥} ∈ 𝑏) |
| 70 | 69 | fmpttd 7135 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) =
𝒫 𝑋)) → (𝑥 ∈ 𝑋 ↦ {𝑥}):𝑋⟶𝑏) |
| 71 | 70 | frnd 6744 |
. . . . . . . . 9
⊢ (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) =
𝒫 𝑋)) → ran
(𝑥 ∈ 𝑋 ↦ {𝑥}) ⊆ 𝑏) |
| 72 | | ssdomg 9040 |
. . . . . . . . 9
⊢ (𝑏 ∈ V → (ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ⊆ 𝑏 → ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ 𝑏)) |
| 73 | 55, 71, 72 | mpsyl 68 |
. . . . . . . 8
⊢ (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) =
𝒫 𝑋)) → ran
(𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ 𝑏) |
| 74 | | simprl 771 |
. . . . . . . 8
⊢ (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) =
𝒫 𝑋)) → 𝑏 ≼
ω) |
| 75 | | domtr 9047 |
. . . . . . . 8
⊢ ((ran
(𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ 𝑏 ∧ 𝑏 ≼ ω) → ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ ω) |
| 76 | 73, 74, 75 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) =
𝒫 𝑋)) → ran
(𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ ω) |
| 77 | 76 | rexlimdva2 3157 |
. . . . . 6
⊢ (𝑋 ∈ V → (∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧
(topGen‘𝑏) =
𝒫 𝑋) → ran
(𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ ω)) |
| 78 | 54, 77 | biimtrid 242 |
. . . . 5
⊢ (𝑋 ∈ V → (𝒫
𝑋 ∈
2ndω → ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ ω)) |
| 79 | 78 | imp 406 |
. . . 4
⊢ ((𝑋 ∈ V ∧ 𝒫 𝑋 ∈ 2ndω)
→ ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ ω) |
| 80 | 53, 79 | impbida 801 |
. . 3
⊢ (𝑋 ∈ V → (ran (𝑥 ∈ 𝑋 ↦ {𝑥}) ≼ ω ↔ 𝒫 𝑋 ∈
2ndω)) |
| 81 | 16, 80 | bitrd 279 |
. 2
⊢ (𝑋 ∈ V → (𝑋 ≼ ω ↔
𝒫 𝑋 ∈
2ndω)) |
| 82 | 1, 2, 81 | pm5.21nii 378 |
1
⊢ (𝑋 ≼ ω ↔
𝒫 𝑋 ∈
2ndω) |