MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dislly Structured version   Visualization version   GIF version

Theorem dislly 22105
Description: The discrete space 𝒫 𝑋 is locally 𝐴 if and only if every singleton space has property 𝐴. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
dislly (𝑋𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝑋

Proof of Theorem dislly
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝒫 𝑋 ∈ Locally 𝐴)
2 simpr 487 . . . . . 6 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝑥𝑋)
3 vex 3497 . . . . . . 7 𝑥 ∈ V
43snelpw 5338 . . . . . 6 (𝑥𝑋 ↔ {𝑥} ∈ 𝒫 𝑋)
52, 4sylib 220 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → {𝑥} ∈ 𝒫 𝑋)
6 vsnid 4602 . . . . . 6 𝑥 ∈ {𝑥}
76a1i 11 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝑥 ∈ {𝑥})
8 llyi 22082 . . . . 5 ((𝒫 𝑋 ∈ Locally 𝐴 ∧ {𝑥} ∈ 𝒫 𝑋𝑥 ∈ {𝑥}) → ∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴))
91, 5, 7, 8syl3anc 1367 . . . 4 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴))
10 simpr1 1190 . . . . . . . . . 10 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑦 ⊆ {𝑥})
11 simpr2 1191 . . . . . . . . . . 11 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑥𝑦)
1211snssd 4742 . . . . . . . . . 10 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → {𝑥} ⊆ 𝑦)
1310, 12eqssd 3984 . . . . . . . . 9 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑦 = {𝑥})
1413oveq2d 7172 . . . . . . . 8 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t 𝑦) = (𝒫 𝑋t {𝑥}))
15 simplll 773 . . . . . . . . 9 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑋𝑉)
16 simplr 767 . . . . . . . . . 10 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑥𝑋)
1716snssd 4742 . . . . . . . . 9 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → {𝑥} ⊆ 𝑋)
18 restdis 21786 . . . . . . . . 9 ((𝑋𝑉 ∧ {𝑥} ⊆ 𝑋) → (𝒫 𝑋t {𝑥}) = 𝒫 {𝑥})
1915, 17, 18syl2anc 586 . . . . . . . 8 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t {𝑥}) = 𝒫 {𝑥})
2014, 19eqtrd 2856 . . . . . . 7 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t 𝑦) = 𝒫 {𝑥})
21 simpr3 1192 . . . . . . 7 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t 𝑦) ∈ 𝐴)
2220, 21eqeltrrd 2914 . . . . . 6 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝒫 {𝑥} ∈ 𝐴)
2322ex 415 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → ((𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴) → 𝒫 {𝑥} ∈ 𝐴))
2423rexlimdvw 3290 . . . 4 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → (∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴) → 𝒫 {𝑥} ∈ 𝐴))
259, 24mpd 15 . . 3 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝒫 {𝑥} ∈ 𝐴)
2625ralrimiva 3182 . 2 ((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) → ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴)
27 distop 21603 . . . 4 (𝑋𝑉 → 𝒫 𝑋 ∈ Top)
2827adantr 483 . . 3 ((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → 𝒫 𝑋 ∈ Top)
29 elpwi 4548 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
3029adantl 484 . . . . . . . 8 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → 𝑦𝑋)
31 ssralv 4033 . . . . . . . 8 (𝑦𝑋 → (∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦 𝒫 {𝑥} ∈ 𝐴))
3230, 31syl 17 . . . . . . 7 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦 𝒫 {𝑥} ∈ 𝐴))
33 simprl 769 . . . . . . . . . . . . . 14 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑥𝑦)
3433snssd 4742 . . . . . . . . . . . . 13 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ⊆ 𝑦)
3530adantr 483 . . . . . . . . . . . . 13 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑦𝑋)
3634, 35sstrd 3977 . . . . . . . . . . . 12 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ⊆ 𝑋)
37 snex 5332 . . . . . . . . . . . . 13 {𝑥} ∈ V
3837elpw 4543 . . . . . . . . . . . 12 ({𝑥} ∈ 𝒫 𝑋 ↔ {𝑥} ⊆ 𝑋)
3936, 38sylibr 236 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ 𝒫 𝑋)
4037elpw 4543 . . . . . . . . . . . 12 ({𝑥} ∈ 𝒫 𝑦 ↔ {𝑥} ⊆ 𝑦)
4134, 40sylibr 236 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ 𝒫 𝑦)
4239, 41elind 4171 . . . . . . . . . 10 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ (𝒫 𝑋 ∩ 𝒫 𝑦))
43 snidg 4599 . . . . . . . . . . 11 (𝑥𝑦𝑥 ∈ {𝑥})
4443ad2antrl 726 . . . . . . . . . 10 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑥 ∈ {𝑥})
45 simpll 765 . . . . . . . . . . . 12 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑋𝑉)
4645, 36, 18syl2anc 586 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → (𝒫 𝑋t {𝑥}) = 𝒫 {𝑥})
47 simprr 771 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝒫 {𝑥} ∈ 𝐴)
4846, 47eqeltrd 2913 . . . . . . . . . 10 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → (𝒫 𝑋t {𝑥}) ∈ 𝐴)
49 eleq2 2901 . . . . . . . . . . . 12 (𝑢 = {𝑥} → (𝑥𝑢𝑥 ∈ {𝑥}))
50 oveq2 7164 . . . . . . . . . . . . 13 (𝑢 = {𝑥} → (𝒫 𝑋t 𝑢) = (𝒫 𝑋t {𝑥}))
5150eleq1d 2897 . . . . . . . . . . . 12 (𝑢 = {𝑥} → ((𝒫 𝑋t 𝑢) ∈ 𝐴 ↔ (𝒫 𝑋t {𝑥}) ∈ 𝐴))
5249, 51anbi12d 632 . . . . . . . . . . 11 (𝑢 = {𝑥} → ((𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴) ↔ (𝑥 ∈ {𝑥} ∧ (𝒫 𝑋t {𝑥}) ∈ 𝐴)))
5352rspcev 3623 . . . . . . . . . 10 (({𝑥} ∈ (𝒫 𝑋 ∩ 𝒫 𝑦) ∧ (𝑥 ∈ {𝑥} ∧ (𝒫 𝑋t {𝑥}) ∈ 𝐴)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
5442, 44, 48, 53syl12anc 834 . . . . . . . . 9 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
5554expr 459 . . . . . . . 8 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ 𝑥𝑦) → (𝒫 {𝑥} ∈ 𝐴 → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
5655ralimdva 3177 . . . . . . 7 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑦 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
5732, 56syld 47 . . . . . 6 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
5857imp 409 . . . . 5 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
5958an32s 650 . . . 4 (((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) ∧ 𝑦 ∈ 𝒫 𝑋) → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
6059ralrimiva 3182 . . 3 ((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → ∀𝑦 ∈ 𝒫 𝑋𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
61 islly 22076 . . 3 (𝒫 𝑋 ∈ Locally 𝐴 ↔ (𝒫 𝑋 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑋𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
6228, 60, 61sylanbrc 585 . 2 ((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → 𝒫 𝑋 ∈ Locally 𝐴)
6326, 62impbida 799 1 (𝑋𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  cin 3935  wss 3936  𝒫 cpw 4539  {csn 4567  (class class class)co 7156  t crest 16694  Topctop 21501  Locally clly 22072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-oadd 8106  df-er 8289  df-en 8510  df-fin 8513  df-fi 8875  df-rest 16696  df-topgen 16717  df-top 21502  df-topon 21519  df-bases 21554  df-lly 22074
This theorem is referenced by:  disllycmp  22106  dis1stc  22107
  Copyright terms: Public domain W3C validator