| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simplr 768 | . . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝒫 𝑋 ∈ Locally 𝐴) | 
| 2 |  | simpr 484 | . . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | 
| 3 |  | vex 3483 | . . . . . . 7
⊢ 𝑥 ∈ V | 
| 4 | 3 | snelpw 5449 | . . . . . 6
⊢ (𝑥 ∈ 𝑋 ↔ {𝑥} ∈ 𝒫 𝑋) | 
| 5 | 2, 4 | sylib 218 | . . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → {𝑥} ∈ 𝒫 𝑋) | 
| 6 |  | vsnid 4662 | . . . . . 6
⊢ 𝑥 ∈ {𝑥} | 
| 7 | 6 | a1i 11 | . . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ {𝑥}) | 
| 8 |  | llyi 23483 | . . . . 5
⊢
((𝒫 𝑋 ∈
Locally 𝐴 ∧ {𝑥} ∈ 𝒫 𝑋 ∧ 𝑥 ∈ {𝑥}) → ∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) | 
| 9 | 1, 5, 7, 8 | syl3anc 1372 | . . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) | 
| 10 |  | simpr1 1194 | . . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑦 ⊆ {𝑥}) | 
| 11 |  | simpr2 1195 | . . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑥 ∈ 𝑦) | 
| 12 | 11 | snssd 4808 | . . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → {𝑥} ⊆ 𝑦) | 
| 13 | 10, 12 | eqssd 4000 | . . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑦 = {𝑥}) | 
| 14 | 13 | oveq2d 7448 | . . . . . . . 8
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → (𝒫 𝑋 ↾t 𝑦) = (𝒫 𝑋 ↾t {𝑥})) | 
| 15 |  | simplll 774 | . . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑋 ∈ 𝑉) | 
| 16 |  | simplr 768 | . . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑥 ∈ 𝑋) | 
| 17 | 16 | snssd 4808 | . . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → {𝑥} ⊆ 𝑋) | 
| 18 |  | restdis 23187 | . . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ {𝑥} ⊆ 𝑋) → (𝒫 𝑋 ↾t {𝑥}) = 𝒫 {𝑥}) | 
| 19 | 15, 17, 18 | syl2anc 584 | . . . . . . . 8
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → (𝒫 𝑋 ↾t {𝑥}) = 𝒫 {𝑥}) | 
| 20 | 14, 19 | eqtrd 2776 | . . . . . . 7
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → (𝒫 𝑋 ↾t 𝑦) = 𝒫 {𝑥}) | 
| 21 |  | simpr3 1196 | . . . . . . 7
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴) | 
| 22 | 20, 21 | eqeltrrd 2841 | . . . . . 6
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝒫 {𝑥} ∈ 𝐴) | 
| 23 | 22 | ex 412 | . . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → ((𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴) → 𝒫 {𝑥} ∈ 𝐴)) | 
| 24 | 23 | rexlimdvw 3159 | . . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → (∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴) → 𝒫 {𝑥} ∈ 𝐴)) | 
| 25 | 9, 24 | mpd 15 | . . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝒫 {𝑥} ∈ 𝐴) | 
| 26 | 25 | ralrimiva 3145 | . 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) → ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) | 
| 27 |  | distop 23003 | . . . 4
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Top) | 
| 28 | 27 | adantr 480 | . . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) → 𝒫 𝑋 ∈ Top) | 
| 29 |  | elpwi 4606 | . . . . . . . . 9
⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋) | 
| 30 | 29 | adantl 481 | . . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) → 𝑦 ⊆ 𝑋) | 
| 31 |  | ssralv 4051 | . . . . . . . 8
⊢ (𝑦 ⊆ 𝑋 → (∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥 ∈ 𝑦 𝒫 {𝑥} ∈ 𝐴)) | 
| 32 | 30, 31 | syl 17 | . . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥 ∈ 𝑦 𝒫 {𝑥} ∈ 𝐴)) | 
| 33 |  | simprl 770 | . . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑥 ∈ 𝑦) | 
| 34 | 33 | snssd 4808 | . . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ⊆ 𝑦) | 
| 35 | 30 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑦 ⊆ 𝑋) | 
| 36 | 34, 35 | sstrd 3993 | . . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ⊆ 𝑋) | 
| 37 |  | vsnex 5433 | . . . . . . . . . . . . 13
⊢ {𝑥} ∈ V | 
| 38 | 37 | elpw 4603 | . . . . . . . . . . . 12
⊢ ({𝑥} ∈ 𝒫 𝑋 ↔ {𝑥} ⊆ 𝑋) | 
| 39 | 36, 38 | sylibr 234 | . . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ 𝒫 𝑋) | 
| 40 | 37 | elpw 4603 | . . . . . . . . . . . 12
⊢ ({𝑥} ∈ 𝒫 𝑦 ↔ {𝑥} ⊆ 𝑦) | 
| 41 | 34, 40 | sylibr 234 | . . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ 𝒫 𝑦) | 
| 42 | 39, 41 | elind 4199 | . . . . . . . . . 10
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)) | 
| 43 |  | snidg 4659 | . . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑦 → 𝑥 ∈ {𝑥}) | 
| 44 | 43 | ad2antrl 728 | . . . . . . . . . 10
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑥 ∈ {𝑥}) | 
| 45 |  | simpll 766 | . . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑋 ∈ 𝑉) | 
| 46 | 45, 36, 18 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → (𝒫 𝑋 ↾t {𝑥}) = 𝒫 {𝑥}) | 
| 47 |  | simprr 772 | . . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝒫 {𝑥} ∈ 𝐴) | 
| 48 | 46, 47 | eqeltrd 2840 | . . . . . . . . . 10
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → (𝒫 𝑋 ↾t {𝑥}) ∈ 𝐴) | 
| 49 |  | eleq2 2829 | . . . . . . . . . . . 12
⊢ (𝑢 = {𝑥} → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ {𝑥})) | 
| 50 |  | oveq2 7440 | . . . . . . . . . . . . 13
⊢ (𝑢 = {𝑥} → (𝒫 𝑋 ↾t 𝑢) = (𝒫 𝑋 ↾t {𝑥})) | 
| 51 | 50 | eleq1d 2825 | . . . . . . . . . . . 12
⊢ (𝑢 = {𝑥} → ((𝒫 𝑋 ↾t 𝑢) ∈ 𝐴 ↔ (𝒫 𝑋 ↾t {𝑥}) ∈ 𝐴)) | 
| 52 | 49, 51 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝑢 = {𝑥} → ((𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴) ↔ (𝑥 ∈ {𝑥} ∧ (𝒫 𝑋 ↾t {𝑥}) ∈ 𝐴))) | 
| 53 | 52 | rspcev 3621 | . . . . . . . . . 10
⊢ (({𝑥} ∈ (𝒫 𝑋 ∩ 𝒫 𝑦) ∧ (𝑥 ∈ {𝑥} ∧ (𝒫 𝑋 ↾t {𝑥}) ∈ 𝐴)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) | 
| 54 | 42, 44, 48, 53 | syl12anc 836 | . . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) | 
| 55 | 54 | expr 456 | . . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑦) → (𝒫 {𝑥} ∈ 𝐴 → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴))) | 
| 56 | 55 | ralimdva 3166 | . . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑦 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴))) | 
| 57 | 32, 56 | syld 47 | . . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴))) | 
| 58 | 57 | imp 406 | . . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) → ∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) | 
| 59 | 58 | an32s 652 | . . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) ∧ 𝑦 ∈ 𝒫 𝑋) → ∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) | 
| 60 | 59 | ralrimiva 3145 | . . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) → ∀𝑦 ∈ 𝒫 𝑋∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) | 
| 61 |  | islly 23477 | . . 3
⊢
(𝒫 𝑋 ∈
Locally 𝐴 ↔ (𝒫
𝑋 ∈ Top ∧
∀𝑦 ∈ 𝒫
𝑋∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴))) | 
| 62 | 28, 60, 61 | sylanbrc 583 | . 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) → 𝒫 𝑋 ∈ Locally 𝐴) | 
| 63 | 26, 62 | impbida 800 | 1
⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴)) |