MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dislly Structured version   Visualization version   GIF version

Theorem dislly 23526
Description: The discrete space 𝒫 𝑋 is locally 𝐴 if and only if every singleton space has property 𝐴. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
dislly (𝑋𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝑋

Proof of Theorem dislly
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝒫 𝑋 ∈ Locally 𝐴)
2 simpr 484 . . . . . 6 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝑥𝑋)
3 vex 3492 . . . . . . 7 𝑥 ∈ V
43snelpw 5465 . . . . . 6 (𝑥𝑋 ↔ {𝑥} ∈ 𝒫 𝑋)
52, 4sylib 218 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → {𝑥} ∈ 𝒫 𝑋)
6 vsnid 4685 . . . . . 6 𝑥 ∈ {𝑥}
76a1i 11 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝑥 ∈ {𝑥})
8 llyi 23503 . . . . 5 ((𝒫 𝑋 ∈ Locally 𝐴 ∧ {𝑥} ∈ 𝒫 𝑋𝑥 ∈ {𝑥}) → ∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴))
91, 5, 7, 8syl3anc 1371 . . . 4 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴))
10 simpr1 1194 . . . . . . . . . 10 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑦 ⊆ {𝑥})
11 simpr2 1195 . . . . . . . . . . 11 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑥𝑦)
1211snssd 4834 . . . . . . . . . 10 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → {𝑥} ⊆ 𝑦)
1310, 12eqssd 4026 . . . . . . . . 9 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑦 = {𝑥})
1413oveq2d 7464 . . . . . . . 8 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t 𝑦) = (𝒫 𝑋t {𝑥}))
15 simplll 774 . . . . . . . . 9 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑋𝑉)
16 simplr 768 . . . . . . . . . 10 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑥𝑋)
1716snssd 4834 . . . . . . . . 9 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → {𝑥} ⊆ 𝑋)
18 restdis 23207 . . . . . . . . 9 ((𝑋𝑉 ∧ {𝑥} ⊆ 𝑋) → (𝒫 𝑋t {𝑥}) = 𝒫 {𝑥})
1915, 17, 18syl2anc 583 . . . . . . . 8 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t {𝑥}) = 𝒫 {𝑥})
2014, 19eqtrd 2780 . . . . . . 7 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t 𝑦) = 𝒫 {𝑥})
21 simpr3 1196 . . . . . . 7 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t 𝑦) ∈ 𝐴)
2220, 21eqeltrrd 2845 . . . . . 6 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝒫 {𝑥} ∈ 𝐴)
2322ex 412 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → ((𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴) → 𝒫 {𝑥} ∈ 𝐴))
2423rexlimdvw 3166 . . . 4 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → (∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴) → 𝒫 {𝑥} ∈ 𝐴))
259, 24mpd 15 . . 3 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝒫 {𝑥} ∈ 𝐴)
2625ralrimiva 3152 . 2 ((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) → ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴)
27 distop 23023 . . . 4 (𝑋𝑉 → 𝒫 𝑋 ∈ Top)
2827adantr 480 . . 3 ((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → 𝒫 𝑋 ∈ Top)
29 elpwi 4629 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
3029adantl 481 . . . . . . . 8 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → 𝑦𝑋)
31 ssralv 4077 . . . . . . . 8 (𝑦𝑋 → (∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦 𝒫 {𝑥} ∈ 𝐴))
3230, 31syl 17 . . . . . . 7 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦 𝒫 {𝑥} ∈ 𝐴))
33 simprl 770 . . . . . . . . . . . . . 14 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑥𝑦)
3433snssd 4834 . . . . . . . . . . . . 13 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ⊆ 𝑦)
3530adantr 480 . . . . . . . . . . . . 13 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑦𝑋)
3634, 35sstrd 4019 . . . . . . . . . . . 12 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ⊆ 𝑋)
37 vsnex 5449 . . . . . . . . . . . . 13 {𝑥} ∈ V
3837elpw 4626 . . . . . . . . . . . 12 ({𝑥} ∈ 𝒫 𝑋 ↔ {𝑥} ⊆ 𝑋)
3936, 38sylibr 234 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ 𝒫 𝑋)
4037elpw 4626 . . . . . . . . . . . 12 ({𝑥} ∈ 𝒫 𝑦 ↔ {𝑥} ⊆ 𝑦)
4134, 40sylibr 234 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ 𝒫 𝑦)
4239, 41elind 4223 . . . . . . . . . 10 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ (𝒫 𝑋 ∩ 𝒫 𝑦))
43 snidg 4682 . . . . . . . . . . 11 (𝑥𝑦𝑥 ∈ {𝑥})
4443ad2antrl 727 . . . . . . . . . 10 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑥 ∈ {𝑥})
45 simpll 766 . . . . . . . . . . . 12 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑋𝑉)
4645, 36, 18syl2anc 583 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → (𝒫 𝑋t {𝑥}) = 𝒫 {𝑥})
47 simprr 772 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝒫 {𝑥} ∈ 𝐴)
4846, 47eqeltrd 2844 . . . . . . . . . 10 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → (𝒫 𝑋t {𝑥}) ∈ 𝐴)
49 eleq2 2833 . . . . . . . . . . . 12 (𝑢 = {𝑥} → (𝑥𝑢𝑥 ∈ {𝑥}))
50 oveq2 7456 . . . . . . . . . . . . 13 (𝑢 = {𝑥} → (𝒫 𝑋t 𝑢) = (𝒫 𝑋t {𝑥}))
5150eleq1d 2829 . . . . . . . . . . . 12 (𝑢 = {𝑥} → ((𝒫 𝑋t 𝑢) ∈ 𝐴 ↔ (𝒫 𝑋t {𝑥}) ∈ 𝐴))
5249, 51anbi12d 631 . . . . . . . . . . 11 (𝑢 = {𝑥} → ((𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴) ↔ (𝑥 ∈ {𝑥} ∧ (𝒫 𝑋t {𝑥}) ∈ 𝐴)))
5352rspcev 3635 . . . . . . . . . 10 (({𝑥} ∈ (𝒫 𝑋 ∩ 𝒫 𝑦) ∧ (𝑥 ∈ {𝑥} ∧ (𝒫 𝑋t {𝑥}) ∈ 𝐴)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
5442, 44, 48, 53syl12anc 836 . . . . . . . . 9 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
5554expr 456 . . . . . . . 8 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ 𝑥𝑦) → (𝒫 {𝑥} ∈ 𝐴 → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
5655ralimdva 3173 . . . . . . 7 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑦 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
5732, 56syld 47 . . . . . 6 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
5857imp 406 . . . . 5 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
5958an32s 651 . . . 4 (((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) ∧ 𝑦 ∈ 𝒫 𝑋) → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
6059ralrimiva 3152 . . 3 ((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → ∀𝑦 ∈ 𝒫 𝑋𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
61 islly 23497 . . 3 (𝒫 𝑋 ∈ Locally 𝐴 ↔ (𝒫 𝑋 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑋𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
6228, 60, 61sylanbrc 582 . 2 ((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → 𝒫 𝑋 ∈ Locally 𝐴)
6326, 62impbida 800 1 (𝑋𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cin 3975  wss 3976  𝒫 cpw 4622  {csn 4648  (class class class)co 7448  t crest 17480  Topctop 22920  Locally clly 23493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-en 9004  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-lly 23495
This theorem is referenced by:  disllycmp  23527  dis1stc  23528
  Copyright terms: Public domain W3C validator