Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dislly Structured version   Visualization version   GIF version

Theorem dislly 22212
 Description: The discrete space 𝒫 𝑋 is locally 𝐴 if and only if every singleton space has property 𝐴. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
dislly (𝑋𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝑋

Proof of Theorem dislly
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝒫 𝑋 ∈ Locally 𝐴)
2 simpr 488 . . . . . 6 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝑥𝑋)
3 vex 3414 . . . . . . 7 𝑥 ∈ V
43snelpw 5311 . . . . . 6 (𝑥𝑋 ↔ {𝑥} ∈ 𝒫 𝑋)
52, 4sylib 221 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → {𝑥} ∈ 𝒫 𝑋)
6 vsnid 4563 . . . . . 6 𝑥 ∈ {𝑥}
76a1i 11 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝑥 ∈ {𝑥})
8 llyi 22189 . . . . 5 ((𝒫 𝑋 ∈ Locally 𝐴 ∧ {𝑥} ∈ 𝒫 𝑋𝑥 ∈ {𝑥}) → ∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴))
91, 5, 7, 8syl3anc 1369 . . . 4 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴))
10 simpr1 1192 . . . . . . . . . 10 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑦 ⊆ {𝑥})
11 simpr2 1193 . . . . . . . . . . 11 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑥𝑦)
1211snssd 4703 . . . . . . . . . 10 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → {𝑥} ⊆ 𝑦)
1310, 12eqssd 3912 . . . . . . . . 9 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑦 = {𝑥})
1413oveq2d 7173 . . . . . . . 8 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t 𝑦) = (𝒫 𝑋t {𝑥}))
15 simplll 774 . . . . . . . . 9 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑋𝑉)
16 simplr 768 . . . . . . . . . 10 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑥𝑋)
1716snssd 4703 . . . . . . . . 9 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → {𝑥} ⊆ 𝑋)
18 restdis 21893 . . . . . . . . 9 ((𝑋𝑉 ∧ {𝑥} ⊆ 𝑋) → (𝒫 𝑋t {𝑥}) = 𝒫 {𝑥})
1915, 17, 18syl2anc 587 . . . . . . . 8 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t {𝑥}) = 𝒫 {𝑥})
2014, 19eqtrd 2794 . . . . . . 7 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t 𝑦) = 𝒫 {𝑥})
21 simpr3 1194 . . . . . . 7 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t 𝑦) ∈ 𝐴)
2220, 21eqeltrrd 2854 . . . . . 6 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝒫 {𝑥} ∈ 𝐴)
2322ex 416 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → ((𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴) → 𝒫 {𝑥} ∈ 𝐴))
2423rexlimdvw 3215 . . . 4 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → (∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴) → 𝒫 {𝑥} ∈ 𝐴))
259, 24mpd 15 . . 3 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝒫 {𝑥} ∈ 𝐴)
2625ralrimiva 3114 . 2 ((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) → ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴)
27 distop 21710 . . . 4 (𝑋𝑉 → 𝒫 𝑋 ∈ Top)
2827adantr 484 . . 3 ((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → 𝒫 𝑋 ∈ Top)
29 elpwi 4507 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
3029adantl 485 . . . . . . . 8 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → 𝑦𝑋)
31 ssralv 3961 . . . . . . . 8 (𝑦𝑋 → (∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦 𝒫 {𝑥} ∈ 𝐴))
3230, 31syl 17 . . . . . . 7 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦 𝒫 {𝑥} ∈ 𝐴))
33 simprl 770 . . . . . . . . . . . . . 14 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑥𝑦)
3433snssd 4703 . . . . . . . . . . . . 13 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ⊆ 𝑦)
3530adantr 484 . . . . . . . . . . . . 13 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑦𝑋)
3634, 35sstrd 3905 . . . . . . . . . . . 12 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ⊆ 𝑋)
37 snex 5305 . . . . . . . . . . . . 13 {𝑥} ∈ V
3837elpw 4502 . . . . . . . . . . . 12 ({𝑥} ∈ 𝒫 𝑋 ↔ {𝑥} ⊆ 𝑋)
3936, 38sylibr 237 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ 𝒫 𝑋)
4037elpw 4502 . . . . . . . . . . . 12 ({𝑥} ∈ 𝒫 𝑦 ↔ {𝑥} ⊆ 𝑦)
4134, 40sylibr 237 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ 𝒫 𝑦)
4239, 41elind 4102 . . . . . . . . . 10 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ (𝒫 𝑋 ∩ 𝒫 𝑦))
43 snidg 4560 . . . . . . . . . . 11 (𝑥𝑦𝑥 ∈ {𝑥})
4443ad2antrl 727 . . . . . . . . . 10 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑥 ∈ {𝑥})
45 simpll 766 . . . . . . . . . . . 12 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑋𝑉)
4645, 36, 18syl2anc 587 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → (𝒫 𝑋t {𝑥}) = 𝒫 {𝑥})
47 simprr 772 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝒫 {𝑥} ∈ 𝐴)
4846, 47eqeltrd 2853 . . . . . . . . . 10 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → (𝒫 𝑋t {𝑥}) ∈ 𝐴)
49 eleq2 2841 . . . . . . . . . . . 12 (𝑢 = {𝑥} → (𝑥𝑢𝑥 ∈ {𝑥}))
50 oveq2 7165 . . . . . . . . . . . . 13 (𝑢 = {𝑥} → (𝒫 𝑋t 𝑢) = (𝒫 𝑋t {𝑥}))
5150eleq1d 2837 . . . . . . . . . . . 12 (𝑢 = {𝑥} → ((𝒫 𝑋t 𝑢) ∈ 𝐴 ↔ (𝒫 𝑋t {𝑥}) ∈ 𝐴))
5249, 51anbi12d 633 . . . . . . . . . . 11 (𝑢 = {𝑥} → ((𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴) ↔ (𝑥 ∈ {𝑥} ∧ (𝒫 𝑋t {𝑥}) ∈ 𝐴)))
5352rspcev 3544 . . . . . . . . . 10 (({𝑥} ∈ (𝒫 𝑋 ∩ 𝒫 𝑦) ∧ (𝑥 ∈ {𝑥} ∧ (𝒫 𝑋t {𝑥}) ∈ 𝐴)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
5442, 44, 48, 53syl12anc 835 . . . . . . . . 9 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
5554expr 460 . . . . . . . 8 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ 𝑥𝑦) → (𝒫 {𝑥} ∈ 𝐴 → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
5655ralimdva 3109 . . . . . . 7 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑦 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
5732, 56syld 47 . . . . . 6 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
5857imp 410 . . . . 5 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
5958an32s 651 . . . 4 (((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) ∧ 𝑦 ∈ 𝒫 𝑋) → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
6059ralrimiva 3114 . . 3 ((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → ∀𝑦 ∈ 𝒫 𝑋𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
61 islly 22183 . . 3 (𝒫 𝑋 ∈ Locally 𝐴 ↔ (𝒫 𝑋 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑋𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
6228, 60, 61sylanbrc 586 . 2 ((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → 𝒫 𝑋 ∈ Locally 𝐴)
6326, 62impbida 800 1 (𝑋𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112  ∀wral 3071  ∃wrex 3072   ∩ cin 3860   ⊆ wss 3861  𝒫 cpw 4498  {csn 4526  (class class class)co 7157   ↾t crest 16767  Topctop 21608  Locally clly 22179 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-en 8542  df-fin 8545  df-fi 8922  df-rest 16769  df-topgen 16790  df-top 21609  df-topon 21626  df-bases 21661  df-lly 22181 This theorem is referenced by:  disllycmp  22213  dis1stc  22214
 Copyright terms: Public domain W3C validator