Step | Hyp | Ref
| Expression |
1 | | simplr 768 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝒫 𝑋 ∈ Locally 𝐴) |
2 | | simpr 488 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
3 | | vex 3414 |
. . . . . . 7
⊢ 𝑥 ∈ V |
4 | 3 | snelpw 5311 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 ↔ {𝑥} ∈ 𝒫 𝑋) |
5 | 2, 4 | sylib 221 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → {𝑥} ∈ 𝒫 𝑋) |
6 | | vsnid 4563 |
. . . . . 6
⊢ 𝑥 ∈ {𝑥} |
7 | 6 | a1i 11 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ {𝑥}) |
8 | | llyi 22189 |
. . . . 5
⊢
((𝒫 𝑋 ∈
Locally 𝐴 ∧ {𝑥} ∈ 𝒫 𝑋 ∧ 𝑥 ∈ {𝑥}) → ∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) |
9 | 1, 5, 7, 8 | syl3anc 1369 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) |
10 | | simpr1 1192 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑦 ⊆ {𝑥}) |
11 | | simpr2 1193 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑥 ∈ 𝑦) |
12 | 11 | snssd 4703 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → {𝑥} ⊆ 𝑦) |
13 | 10, 12 | eqssd 3912 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑦 = {𝑥}) |
14 | 13 | oveq2d 7173 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → (𝒫 𝑋 ↾t 𝑦) = (𝒫 𝑋 ↾t {𝑥})) |
15 | | simplll 774 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑋 ∈ 𝑉) |
16 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑥 ∈ 𝑋) |
17 | 16 | snssd 4703 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → {𝑥} ⊆ 𝑋) |
18 | | restdis 21893 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ {𝑥} ⊆ 𝑋) → (𝒫 𝑋 ↾t {𝑥}) = 𝒫 {𝑥}) |
19 | 15, 17, 18 | syl2anc 587 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → (𝒫 𝑋 ↾t {𝑥}) = 𝒫 {𝑥}) |
20 | 14, 19 | eqtrd 2794 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → (𝒫 𝑋 ↾t 𝑦) = 𝒫 {𝑥}) |
21 | | simpr3 1194 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴) |
22 | 20, 21 | eqeltrrd 2854 |
. . . . . 6
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝒫 {𝑥} ∈ 𝐴) |
23 | 22 | ex 416 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → ((𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴) → 𝒫 {𝑥} ∈ 𝐴)) |
24 | 23 | rexlimdvw 3215 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → (∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴) → 𝒫 {𝑥} ∈ 𝐴)) |
25 | 9, 24 | mpd 15 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝒫 {𝑥} ∈ 𝐴) |
26 | 25 | ralrimiva 3114 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) → ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) |
27 | | distop 21710 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Top) |
28 | 27 | adantr 484 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) → 𝒫 𝑋 ∈ Top) |
29 | | elpwi 4507 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋) |
30 | 29 | adantl 485 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) → 𝑦 ⊆ 𝑋) |
31 | | ssralv 3961 |
. . . . . . . 8
⊢ (𝑦 ⊆ 𝑋 → (∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥 ∈ 𝑦 𝒫 {𝑥} ∈ 𝐴)) |
32 | 30, 31 | syl 17 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥 ∈ 𝑦 𝒫 {𝑥} ∈ 𝐴)) |
33 | | simprl 770 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑥 ∈ 𝑦) |
34 | 33 | snssd 4703 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ⊆ 𝑦) |
35 | 30 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑦 ⊆ 𝑋) |
36 | 34, 35 | sstrd 3905 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ⊆ 𝑋) |
37 | | snex 5305 |
. . . . . . . . . . . . 13
⊢ {𝑥} ∈ V |
38 | 37 | elpw 4502 |
. . . . . . . . . . . 12
⊢ ({𝑥} ∈ 𝒫 𝑋 ↔ {𝑥} ⊆ 𝑋) |
39 | 36, 38 | sylibr 237 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ 𝒫 𝑋) |
40 | 37 | elpw 4502 |
. . . . . . . . . . . 12
⊢ ({𝑥} ∈ 𝒫 𝑦 ↔ {𝑥} ⊆ 𝑦) |
41 | 34, 40 | sylibr 237 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ 𝒫 𝑦) |
42 | 39, 41 | elind 4102 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)) |
43 | | snidg 4560 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑦 → 𝑥 ∈ {𝑥}) |
44 | 43 | ad2antrl 727 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑥 ∈ {𝑥}) |
45 | | simpll 766 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑋 ∈ 𝑉) |
46 | 45, 36, 18 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → (𝒫 𝑋 ↾t {𝑥}) = 𝒫 {𝑥}) |
47 | | simprr 772 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝒫 {𝑥} ∈ 𝐴) |
48 | 46, 47 | eqeltrd 2853 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → (𝒫 𝑋 ↾t {𝑥}) ∈ 𝐴) |
49 | | eleq2 2841 |
. . . . . . . . . . . 12
⊢ (𝑢 = {𝑥} → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ {𝑥})) |
50 | | oveq2 7165 |
. . . . . . . . . . . . 13
⊢ (𝑢 = {𝑥} → (𝒫 𝑋 ↾t 𝑢) = (𝒫 𝑋 ↾t {𝑥})) |
51 | 50 | eleq1d 2837 |
. . . . . . . . . . . 12
⊢ (𝑢 = {𝑥} → ((𝒫 𝑋 ↾t 𝑢) ∈ 𝐴 ↔ (𝒫 𝑋 ↾t {𝑥}) ∈ 𝐴)) |
52 | 49, 51 | anbi12d 633 |
. . . . . . . . . . 11
⊢ (𝑢 = {𝑥} → ((𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴) ↔ (𝑥 ∈ {𝑥} ∧ (𝒫 𝑋 ↾t {𝑥}) ∈ 𝐴))) |
53 | 52 | rspcev 3544 |
. . . . . . . . . 10
⊢ (({𝑥} ∈ (𝒫 𝑋 ∩ 𝒫 𝑦) ∧ (𝑥 ∈ {𝑥} ∧ (𝒫 𝑋 ↾t {𝑥}) ∈ 𝐴)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) |
54 | 42, 44, 48, 53 | syl12anc 835 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) |
55 | 54 | expr 460 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑦) → (𝒫 {𝑥} ∈ 𝐴 → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴))) |
56 | 55 | ralimdva 3109 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑦 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴))) |
57 | 32, 56 | syld 47 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴))) |
58 | 57 | imp 410 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) → ∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) |
59 | 58 | an32s 651 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) ∧ 𝑦 ∈ 𝒫 𝑋) → ∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) |
60 | 59 | ralrimiva 3114 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) → ∀𝑦 ∈ 𝒫 𝑋∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) |
61 | | islly 22183 |
. . 3
⊢
(𝒫 𝑋 ∈
Locally 𝐴 ↔ (𝒫
𝑋 ∈ Top ∧
∀𝑦 ∈ 𝒫
𝑋∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴))) |
62 | 28, 60, 61 | sylanbrc 586 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) → 𝒫 𝑋 ∈ Locally 𝐴) |
63 | 26, 62 | impbida 800 |
1
⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴)) |