| Step | Hyp | Ref
| Expression |
| 1 | | simplr 768 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝒫 𝑋 ∈ Locally 𝐴) |
| 2 | | simpr 484 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 3 | | vex 3468 |
. . . . . . 7
⊢ 𝑥 ∈ V |
| 4 | 3 | snelpw 5425 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 ↔ {𝑥} ∈ 𝒫 𝑋) |
| 5 | 2, 4 | sylib 218 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → {𝑥} ∈ 𝒫 𝑋) |
| 6 | | vsnid 4644 |
. . . . . 6
⊢ 𝑥 ∈ {𝑥} |
| 7 | 6 | a1i 11 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ {𝑥}) |
| 8 | | llyi 23417 |
. . . . 5
⊢
((𝒫 𝑋 ∈
Locally 𝐴 ∧ {𝑥} ∈ 𝒫 𝑋 ∧ 𝑥 ∈ {𝑥}) → ∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) |
| 9 | 1, 5, 7, 8 | syl3anc 1373 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) |
| 10 | | simpr1 1195 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑦 ⊆ {𝑥}) |
| 11 | | simpr2 1196 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑥 ∈ 𝑦) |
| 12 | 11 | snssd 4790 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → {𝑥} ⊆ 𝑦) |
| 13 | 10, 12 | eqssd 3981 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑦 = {𝑥}) |
| 14 | 13 | oveq2d 7426 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → (𝒫 𝑋 ↾t 𝑦) = (𝒫 𝑋 ↾t {𝑥})) |
| 15 | | simplll 774 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑋 ∈ 𝑉) |
| 16 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝑥 ∈ 𝑋) |
| 17 | 16 | snssd 4790 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → {𝑥} ⊆ 𝑋) |
| 18 | | restdis 23121 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ {𝑥} ⊆ 𝑋) → (𝒫 𝑋 ↾t {𝑥}) = 𝒫 {𝑥}) |
| 19 | 15, 17, 18 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → (𝒫 𝑋 ↾t {𝑥}) = 𝒫 {𝑥}) |
| 20 | 14, 19 | eqtrd 2771 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → (𝒫 𝑋 ↾t 𝑦) = 𝒫 {𝑥}) |
| 21 | | simpr3 1197 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴) |
| 22 | 20, 21 | eqeltrrd 2836 |
. . . . . 6
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴)) → 𝒫 {𝑥} ∈ 𝐴) |
| 23 | 22 | ex 412 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → ((𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴) → 𝒫 {𝑥} ∈ 𝐴)) |
| 24 | 23 | rexlimdvw 3147 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → (∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥 ∈ 𝑦 ∧ (𝒫 𝑋 ↾t 𝑦) ∈ 𝐴) → 𝒫 {𝑥} ∈ 𝐴)) |
| 25 | 9, 24 | mpd 15 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝒫 {𝑥} ∈ 𝐴) |
| 26 | 25 | ralrimiva 3133 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) → ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) |
| 27 | | distop 22938 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Top) |
| 28 | 27 | adantr 480 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) → 𝒫 𝑋 ∈ Top) |
| 29 | | elpwi 4587 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋) |
| 30 | 29 | adantl 481 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) → 𝑦 ⊆ 𝑋) |
| 31 | | ssralv 4032 |
. . . . . . . 8
⊢ (𝑦 ⊆ 𝑋 → (∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥 ∈ 𝑦 𝒫 {𝑥} ∈ 𝐴)) |
| 32 | 30, 31 | syl 17 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥 ∈ 𝑦 𝒫 {𝑥} ∈ 𝐴)) |
| 33 | | simprl 770 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑥 ∈ 𝑦) |
| 34 | 33 | snssd 4790 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ⊆ 𝑦) |
| 35 | 30 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑦 ⊆ 𝑋) |
| 36 | 34, 35 | sstrd 3974 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ⊆ 𝑋) |
| 37 | | vsnex 5409 |
. . . . . . . . . . . . 13
⊢ {𝑥} ∈ V |
| 38 | 37 | elpw 4584 |
. . . . . . . . . . . 12
⊢ ({𝑥} ∈ 𝒫 𝑋 ↔ {𝑥} ⊆ 𝑋) |
| 39 | 36, 38 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ 𝒫 𝑋) |
| 40 | 37 | elpw 4584 |
. . . . . . . . . . . 12
⊢ ({𝑥} ∈ 𝒫 𝑦 ↔ {𝑥} ⊆ 𝑦) |
| 41 | 34, 40 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ 𝒫 𝑦) |
| 42 | 39, 41 | elind 4180 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)) |
| 43 | | snidg 4641 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑦 → 𝑥 ∈ {𝑥}) |
| 44 | 43 | ad2antrl 728 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑥 ∈ {𝑥}) |
| 45 | | simpll 766 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑋 ∈ 𝑉) |
| 46 | 45, 36, 18 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → (𝒫 𝑋 ↾t {𝑥}) = 𝒫 {𝑥}) |
| 47 | | simprr 772 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝒫 {𝑥} ∈ 𝐴) |
| 48 | 46, 47 | eqeltrd 2835 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → (𝒫 𝑋 ↾t {𝑥}) ∈ 𝐴) |
| 49 | | eleq2 2824 |
. . . . . . . . . . . 12
⊢ (𝑢 = {𝑥} → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ {𝑥})) |
| 50 | | oveq2 7418 |
. . . . . . . . . . . . 13
⊢ (𝑢 = {𝑥} → (𝒫 𝑋 ↾t 𝑢) = (𝒫 𝑋 ↾t {𝑥})) |
| 51 | 50 | eleq1d 2820 |
. . . . . . . . . . . 12
⊢ (𝑢 = {𝑥} → ((𝒫 𝑋 ↾t 𝑢) ∈ 𝐴 ↔ (𝒫 𝑋 ↾t {𝑥}) ∈ 𝐴)) |
| 52 | 49, 51 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑢 = {𝑥} → ((𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴) ↔ (𝑥 ∈ {𝑥} ∧ (𝒫 𝑋 ↾t {𝑥}) ∈ 𝐴))) |
| 53 | 52 | rspcev 3606 |
. . . . . . . . . 10
⊢ (({𝑥} ∈ (𝒫 𝑋 ∩ 𝒫 𝑦) ∧ (𝑥 ∈ {𝑥} ∧ (𝒫 𝑋 ↾t {𝑥}) ∈ 𝐴)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) |
| 54 | 42, 44, 48, 53 | syl12anc 836 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) |
| 55 | 54 | expr 456 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑦) → (𝒫 {𝑥} ∈ 𝐴 → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴))) |
| 56 | 55 | ralimdva 3153 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑦 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴))) |
| 57 | 32, 56 | syld 47 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴))) |
| 58 | 57 | imp 406 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋) ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) → ∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) |
| 59 | 58 | an32s 652 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) ∧ 𝑦 ∈ 𝒫 𝑋) → ∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) |
| 60 | 59 | ralrimiva 3133 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) → ∀𝑦 ∈ 𝒫 𝑋∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴)) |
| 61 | | islly 23411 |
. . 3
⊢
(𝒫 𝑋 ∈
Locally 𝐴 ↔ (𝒫
𝑋 ∈ Top ∧
∀𝑦 ∈ 𝒫
𝑋∀𝑥 ∈ 𝑦 ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥 ∈ 𝑢 ∧ (𝒫 𝑋 ↾t 𝑢) ∈ 𝐴))) |
| 62 | 28, 60, 61 | sylanbrc 583 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴) → 𝒫 𝑋 ∈ Locally 𝐴) |
| 63 | 26, 62 | impbida 800 |
1
⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴)) |