| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spc2gv | Structured version Visualization version GIF version | ||
| Description: Specialization with two quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| spc2egv.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spc2gv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc2egv.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | spc2egv 3554 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝜓 → ∃𝑥∃𝑦 ¬ 𝜑)) |
| 4 | 2nalexn 1828 | . . 3 ⊢ (¬ ∀𝑥∀𝑦𝜑 ↔ ∃𝑥∃𝑦 ¬ 𝜑) | |
| 5 | 3, 4 | imbitrrdi 252 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝜓 → ¬ ∀𝑥∀𝑦𝜑)) |
| 6 | 5 | con4d 115 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: rspc2gv 3587 trel 5207 elovmpo 7594 seqf1olem2 13949 seqf1o 13950 fi1uzind 14414 brfi1indALT 14417 pslem 18478 cnmpt12 23552 cnmpt22 23559 mclsppslem 35560 mbfresfi 37650 lpolconN 41470 ismrcd2 42676 ismrc 42678 euendfunc 49515 |
| Copyright terms: Public domain | W3C validator |