MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc2gv Structured version   Visualization version   GIF version

Theorem spc2gv 3555
Description: Specialization with two quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
Hypothesis
Ref Expression
spc2egv.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
spc2gv ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem spc2gv
StepHypRef Expression
1 spc2egv.1 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
21notbid 318 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (¬ 𝜑 ↔ ¬ 𝜓))
32spc2egv 3554 . . 3 ((𝐴𝑉𝐵𝑊) → (¬ 𝜓 → ∃𝑥𝑦 ¬ 𝜑))
4 2nalexn 1828 . . 3 (¬ ∀𝑥𝑦𝜑 ↔ ∃𝑥𝑦 ¬ 𝜑)
53, 4imbitrrdi 252 . 2 ((𝐴𝑉𝐵𝑊) → (¬ 𝜓 → ¬ ∀𝑥𝑦𝜑))
65con4d 115 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-clel 2803
This theorem is referenced by:  rspc2gv  3587  trel  5207  elovmpo  7594  seqf1olem2  13949  seqf1o  13950  fi1uzind  14414  brfi1indALT  14417  pslem  18478  cnmpt12  23552  cnmpt22  23559  mclsppslem  35566  mbfresfi  37656  lpolconN  41476  ismrcd2  42682  ismrc  42684  euendfunc  49521
  Copyright terms: Public domain W3C validator