Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spc2gv | Structured version Visualization version GIF version |
Description: Specialization with two quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
spc2egv.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spc2gv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spc2egv.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 317 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | spc2egv 3528 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝜓 → ∃𝑥∃𝑦 ¬ 𝜑)) |
4 | 2nalexn 1831 | . . 3 ⊢ (¬ ∀𝑥∀𝑦𝜑 ↔ ∃𝑥∃𝑦 ¬ 𝜑) | |
5 | 3, 4 | syl6ibr 251 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝜓 → ¬ ∀𝑥∀𝑦𝜑)) |
6 | 5 | con4d 115 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: rspc2gv 3561 trel 5194 elovmpo 7492 seqf1olem2 13691 seqf1o 13692 fi1uzind 14139 brfi1indALT 14142 pslem 18205 cnmpt12 22726 cnmpt22 22733 mclsppslem 33445 mbfresfi 35750 lpolconN 39428 ismrcd2 40437 ismrc 40439 |
Copyright terms: Public domain | W3C validator |