MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc2gv Structured version   Visualization version   GIF version

Theorem spc2gv 3539
Description: Specialization with two quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
Hypothesis
Ref Expression
spc2egv.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
spc2gv ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem spc2gv
StepHypRef Expression
1 spc2egv.1 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
21notbid 318 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (¬ 𝜑 ↔ ¬ 𝜓))
32spc2egv 3538 . . 3 ((𝐴𝑉𝐵𝑊) → (¬ 𝜓 → ∃𝑥𝑦 ¬ 𝜑))
4 2nalexn 1830 . . 3 (¬ ∀𝑥𝑦𝜑 ↔ ∃𝑥𝑦 ¬ 𝜑)
53, 4syl6ibr 251 . 2 ((𝐴𝑉𝐵𝑊) → (¬ 𝜓 → ¬ ∀𝑥𝑦𝜑))
65con4d 115 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-clel 2816
This theorem is referenced by:  rspc2gv  3569  trel  5198  elovmpo  7514  seqf1olem2  13763  seqf1o  13764  fi1uzind  14211  brfi1indALT  14214  pslem  18290  cnmpt12  22818  cnmpt22  22825  mclsppslem  33545  mbfresfi  35823  lpolconN  39501  ismrcd2  40521  ismrc  40523
  Copyright terms: Public domain W3C validator