![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spc2gv | Structured version Visualization version GIF version |
Description: Specialization with two quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
spc2egv.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spc2gv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spc2egv.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 318 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | spc2egv 3589 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝜓 → ∃𝑥∃𝑦 ¬ 𝜑)) |
4 | 2nalexn 1829 | . . 3 ⊢ (¬ ∀𝑥∀𝑦𝜑 ↔ ∃𝑥∃𝑦 ¬ 𝜑) | |
5 | 3, 4 | imbitrrdi 251 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝜓 → ¬ ∀𝑥∀𝑦𝜑)) |
6 | 5 | con4d 115 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1780 ∈ wcel 2105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-clel 2809 |
This theorem is referenced by: rspc2gv 3621 trel 5274 elovmpo 7655 seqf1olem2 14015 seqf1o 14016 fi1uzind 14465 brfi1indALT 14468 pslem 18535 cnmpt12 23491 cnmpt22 23498 mclsppslem 35038 mbfresfi 36998 lpolconN 40822 ismrcd2 41900 ismrc 41902 |
Copyright terms: Public domain | W3C validator |