MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc2gv Structured version   Visualization version   GIF version

Theorem spc2gv 3566
Description: Specialization with two quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
Hypothesis
Ref Expression
spc2egv.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
spc2gv ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem spc2gv
StepHypRef Expression
1 spc2egv.1 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
21notbid 318 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (¬ 𝜑 ↔ ¬ 𝜓))
32spc2egv 3565 . . 3 ((𝐴𝑉𝐵𝑊) → (¬ 𝜓 → ∃𝑥𝑦 ¬ 𝜑))
4 2nalexn 1828 . . 3 (¬ ∀𝑥𝑦𝜑 ↔ ∃𝑥𝑦 ¬ 𝜑)
53, 4imbitrrdi 252 . 2 ((𝐴𝑉𝐵𝑊) → (¬ 𝜓 → ¬ ∀𝑥𝑦𝜑))
65con4d 115 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-clel 2803
This theorem is referenced by:  rspc2gv  3598  trel  5223  elovmpo  7634  seqf1olem2  14007  seqf1o  14008  fi1uzind  14472  brfi1indALT  14475  pslem  18531  cnmpt12  23554  cnmpt22  23561  mclsppslem  35570  mbfresfi  37660  lpolconN  41481  ismrcd2  42687  ismrc  42689  euendfunc  49512
  Copyright terms: Public domain W3C validator