MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc2gv Structured version   Visualization version   GIF version

Theorem spc2gv 3590
Description: Specialization with two quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
Hypothesis
Ref Expression
spc2egv.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
spc2gv ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem spc2gv
StepHypRef Expression
1 spc2egv.1 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
21notbid 318 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (¬ 𝜑 ↔ ¬ 𝜓))
32spc2egv 3589 . . 3 ((𝐴𝑉𝐵𝑊) → (¬ 𝜓 → ∃𝑥𝑦 ¬ 𝜑))
4 2nalexn 1829 . . 3 (¬ ∀𝑥𝑦𝜑 ↔ ∃𝑥𝑦 ¬ 𝜑)
53, 4imbitrrdi 251 . 2 ((𝐴𝑉𝐵𝑊) → (¬ 𝜓 → ¬ ∀𝑥𝑦𝜑))
65con4d 115 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1538   = wceq 1540  wex 1780  wcel 2105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-clel 2809
This theorem is referenced by:  rspc2gv  3621  trel  5274  elovmpo  7655  seqf1olem2  14015  seqf1o  14016  fi1uzind  14465  brfi1indALT  14468  pslem  18535  cnmpt12  23491  cnmpt22  23498  mclsppslem  35038  mbfresfi  36998  lpolconN  40822  ismrcd2  41900  ismrc  41902
  Copyright terms: Public domain W3C validator