MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc2egv Structured version   Visualization version   GIF version

Theorem spc2egv 3538
Description: Existential specialization with two quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
spc2egv.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
spc2egv ((𝐴𝑉𝐵𝑊) → (𝜓 → ∃𝑥𝑦𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem spc2egv
StepHypRef Expression
1 elisset 2820 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 elisset 2820 . . . 4 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
31, 2anim12i 613 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
4 exdistrv 1959 . . 3 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
53, 4sylibr 233 . 2 ((𝐴𝑉𝐵𝑊) → ∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵))
6 spc2egv.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
76biimprcd 249 . . 3 (𝜓 → ((𝑥 = 𝐴𝑦 = 𝐵) → 𝜑))
872eximdv 1922 . 2 (𝜓 → (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑥𝑦𝜑))
95, 8syl5com 31 1 ((𝐴𝑉𝐵𝑊) → (𝜓 → ∃𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-clel 2816
This theorem is referenced by:  spc2gv  3539  spc3egv  3542  spc2ev  3546  tpres  7076  addsrpr  10831  mulsrpr  10832  2pthon3v  28308  umgr2wlk  28314  0pthonv  28493  1pthon2v  28517  satfv1  33325  sat1el2xp  33341  dvnprodlem1  43487  dfatcolem  44747  fundcmpsurbijinj  44862
  Copyright terms: Public domain W3C validator