Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spc2egv | Structured version Visualization version GIF version |
Description: Existential specialization with two quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
spc2egv.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spc2egv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝜓 → ∃𝑥∃𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2820 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | elisset 2820 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) | |
3 | 1, 2 | anim12i 612 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) |
4 | exdistrv 1960 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | |
5 | 3, 4 | sylibr 233 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
6 | spc2egv.1 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
7 | 6 | biimprcd 249 | . . 3 ⊢ (𝜓 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜑)) |
8 | 7 | 2eximdv 1923 | . 2 ⊢ (𝜓 → (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦𝜑)) |
9 | 5, 8 | syl5com 31 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝜓 → ∃𝑥∃𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: spc2gv 3529 spc3egv 3532 spc2ev 3536 tpres 7058 addsrpr 10762 mulsrpr 10763 2pthon3v 28209 umgr2wlk 28215 0pthonv 28394 1pthon2v 28418 satfv1 33225 sat1el2xp 33241 dvnprodlem1 43377 dfatcolem 44634 fundcmpsurbijinj 44750 |
Copyright terms: Public domain | W3C validator |