| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spc2egv | Structured version Visualization version GIF version | ||
| Description: Existential specialization with two quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| spc2egv.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spc2egv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝜓 → ∃𝑥∃𝑦𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2810 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | elisset 2810 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) | |
| 3 | 1, 2 | anim12i 613 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) |
| 4 | exdistrv 1955 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | |
| 5 | 3, 4 | sylibr 234 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 6 | spc2egv.1 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | biimprcd 250 | . . 3 ⊢ (𝜓 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜑)) |
| 8 | 7 | 2eximdv 1919 | . 2 ⊢ (𝜓 → (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦𝜑)) |
| 9 | 5, 8 | syl5com 31 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝜓 → ∃𝑥∃𝑦𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: spc2gv 3563 spc3egv 3566 spc2ev 3570 tpres 7157 addsrpr 11004 mulsrpr 11005 2pthon3v 29923 umgr2wlk 29929 0pthonv 30108 1pthon2v 30132 satfv1 35343 sat1el2xp 35359 dvnprodlem1 45937 dfatcolem 47249 fundcmpsurbijinj 47404 gpgprismgr4cyclex 48090 |
| Copyright terms: Public domain | W3C validator |